解答解説のページへ

自然数 n に対し、定積分 $I_n = \int_0^1 \frac{x^n}{r^2 + 1} dx$ を考える。このとき、次の問いに答えよ。

- (1) $I_n + I_{n+2} = \frac{1}{n+1}$ を示せ。
- (2) $0 \le I_{n+1} \le I_n \le \frac{1}{n+1}$ を示せ。
- (3) $\lim_{n \to \infty} nI_n$ を求めよ。
- (4) $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて $\lim_{n \to \infty} S_n$ を求めよ。

解答解説のページへ

a を 1 より大きい実数とする。このとき、次の問いに答えよ。

- (1) 関数 $y = a^x$ と $y = \log_a x$ のグラフの共有点は、存在すれば直線 y = x 上にあることを示せ。
- (2) 関数 $y = a^x$ と $y = \log_a x$ のグラフの共有点は 2 個以下であることを示せ。
- (3) 関数 $y = a^x$ と $y = \log_a x$ のグラフの共有点は 1 個であるとする。このときの共有点の座標と a の値を求めよ。

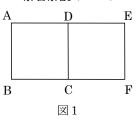
解答解説のページへ

pを素数, a, b を整数とする。このとき, 次の問いに答えよ。

- (1) $(a+b)^p a^p b^p$ は p で割り切れることを示せ。
- (2) $(a+2)^p a^p$ は偶数であることを示せ。
- (3) $(a+2)^p a^p$ を 2p で割ったときの余りを求めよ。

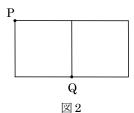
解答解説のページへ

図 1 のように 2 つの正方形 ABCD と CDEF を並べた図形 A を考える。2 点 P, Q が 6 個の頂点 A, B, C, D, E, F を以下の 規則(a), (b)に従って移動する。



- (a) 時刻 0 では図 2 のように点 P は頂点 A に、点 Q は頂 B 点 C にいる。
- (b) 点 P, Q は時刻が 1 増えるごとに独立に、今いる頂点 と辺で結ばれている頂点に等確率で移動する。

時刻nまで2点P, Qが同時に同じ頂点にいることが一度もない確率を p_n と表す。また時刻nまでに2点P, Qが同時に同じ頂点にいることが一度もなく、かつ時刻nに2点P, Qが



ともに同じ正方形上にいる確率を a_n と表し、 $b_n = p_n - a_n$ と定める。このとき、次の問いに答えよ。

- (1) 時刻 1 での点 P, Q の可能な配置を, 図 2 にならってすべて図示せよ。
- (2) a_1 , b_1 , a_2 , b_2 を求めよ。
- (3) a_{n+1} , b_{n+1} を a_n , b_n で表せ。
- (4) $p_n \leq \left(\frac{3}{4}\right)^n$ を示せ。

問題のページへ

(1)
$$I_n = \int_0^1 \frac{x^n}{x^2 + 1} dx$$
 に対して、 $I_{n+2} = \int_0^1 \frac{x^{n+2}}{x^2 + 1} dx$ より、
$$I_n + I_{n+2} = \int_0^1 \frac{x^n (1 + x^2)}{x^2 + 1} dx = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1} \cdots \cdots \oplus$$

(2)
$$0 \le x \le 1$$
 (7 (8) $0 \le \frac{x^{n+1}}{x^2+1} \le \frac{x^n}{x^2+1}$ $1 \le y$, $0 \le \int_0^1 \frac{x^{n+1}}{x^2+1} dx \le \int_0^1 \frac{x^n}{x^2+1} dx$ $0 \le I_{n+1} \le I_n \cdots 2$

すると、
$$I_{n+2} \geq 0$$
 となり、①から $I_n \leq \frac{1}{n+1}$ ……3

②③
$$\sharp \emptyset$$
, $0 \le I_{n+1} \le I_n \le \frac{1}{n+1} \cdots$

(3)
$$n \ge 3$$
 のとき、②から $0 \le I_{n+2} \le I_{n+1} \le I_n \le I_{n-1} \le I_{n-2}$ となるので、①より、
$$\frac{1}{n+1} = I_n + I_{n+2} \le 2I_n , \quad \frac{1}{n-1} = I_{n-2} + I_n \ge 2I_n$$
 よって、 $\frac{1}{2(n+1)} \le I_n \le \frac{1}{2(n-1)}$ から、 $\frac{n}{2(n+1)} \le nI_n \le \frac{n}{2(n-1)}$ となり、
$$\lim_{n \to \infty} nI_n = \frac{1}{2}$$

(4)
$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{2k}$$
 に対して、 $a_n = \frac{(-1)^{n-1}}{2n}$ とおく。

①から、
$$I_{2n-1}+I_{2n+1}=\frac{1}{2n}$$
 となるので、 $a_n=(-1)^{n-1}(I_{2n-1}+I_{2n+1})$ より、
$$S_n=(I_1+I_3)-(I_3+I_5)+(I_5+I_7)-(I_7+I_9)+\cdots+(-1)^{n-1}(I_{2n-1}+I_{2n+1})$$
$$=I_1+(-1)^{n-1}I_{2n+1}$$

ここで、④より
$$\lim_{n \to \infty} I_n = 0$$
 となるので、 $\lim_{n \to \infty} (-1)^{n-1} I_{2n+1} = 0$ となり、

$$\lim_{n \to \infty} S_n = I_1 = \int_0^1 \frac{x}{r^2 + 1} dx = \left[\frac{1}{2} \log(x^2 + 1) \right]_0^1 = \frac{1}{2} \log 2$$

[解 説]

定積分と極限の融合問題です。問題文にも暗示されているように、 $(1)\rightarrow (2)\rightarrow (3)$ という流れと、 $(1)\rightarrow (2)\rightarrow (4)$ という流れで、設問が構成されています。

問題のページへ

(1) a>1 のとき、 $y=a^x$ ……①と $y=\log_a x$ ……②のグラフが、共有点(p, q) をもつとすると、①②から、p>0、q>0 で、

$$q = a^p \cdots 3, \ q = \log_a p \cdots 4$$

④より、
$$p=a^q$$
となり、③と合わせて、 $\frac{q}{p}=a^{p-q}$ ………⑤

(i)
$$p>q$$
 のとき $0<\frac{q}{p}<1$ で $a^{p-q}>1$ より、⑤は成立しない。

(ii)
$$p < q$$
のとき $\frac{q}{p} > 1$ で $a^{p-q} < 1$ より、⑤は成立しない。

(iii)
$$p=q$$
 のとき $\frac{q}{p}=1$ で $a^{p-q}=1$ より、⑤は成立する。

(i)~(iii)より、①と②のグラフが共有点をもつとき、それは直線y=x上にある。

(2) (1)より、①と②のグラフが共有点は、②と直線y=xの共有点なので、

$$x = \log_a x$$
, $x = \frac{\log x}{\log a}$, $\log a = \frac{\log x}{x} \cdots$

さて、 $f(x) = \frac{\log x}{x}$ とおくと、 $f(x) = \log a$ の解が①と②のグラフが共有点の x

座標に対応し,

$$f'(x) = \frac{1 - \log x}{x^2}$$

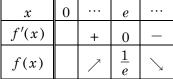
すると、f(x)の増減は右表のようになる。さらに、

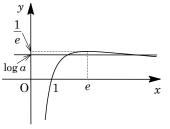
$$\lim_{x \to +0} f(x) = -\infty , \quad \lim_{x \to \infty} f(x) = 0 \text{ から } , \quad y = f(x) \text{ の } \mathcal{I}$$

ラフは右図の曲線である。

ここで、a>1から $\log a>0$ に注意すると、⑥の解は

2 個以下, すなわち①と②のグラフの共有点は 2 個以下である。





(3) ①と②のグラフの共有点が 1 個であるとき, (2)より, x = e となり, 共有点の座標は(e, e) である。また, このとき $\log a = \frac{1}{e}$ より, $a = e^{\frac{1}{e}}$ となる。

[解 説]

微分の方程式への応用問題です。(1)と(2)は、題意を考えると、グラフから明らかというわけにはいきません。また、(2)では $y = \log_a x$ と y = x の組合せで処理しましたが、 $y = a^x$ と y = x を組合せでも構いません。対数は微分と相性良しと思い、前者を選択しただけですので。

問題のページへ

(1) p を素数, a, b を整数とするとき, 二項定理より,

$$(a+b)^p - a^p - b^p = \sum_{k=0}^p {}_p C_k a^{p-k} b^k - a^p - b^p = \sum_{k=1}^{p-1} {}_p C_k a^{p-k} b^k$$

ここで、 $1 \le k \le p-1$ のとき、k! および(p-k)! はともに p で割り切れない。これより、 $_p\mathbf{C}_k = \frac{p!}{k!\,(p-k)!}$ は p の倍数となる。

よって、 $(a+b)^p - a^p - b^p$ は p で割り切れる。

(2) (1)と同様に、二項定理より、

$$(a+2)^p - a^p = \sum_{k=1}^p {}_p C_k a^{p-k} \cdot 2^k$$

ここで、 $1 \le k \le p$ のとき 2^k は 2 の倍数となるので、 $(a+2)^p - a^p$ は偶数である。

(3) $A = (a+2)^p - a^p$ とおくと, (2)より A は偶数なので, l を整数として,

$$A = 2l \cdots \cdots \bigcirc$$

(1)より, $(a+2)^p - a^p - 2^p$ は p で割り切れることより, m を整数として,

$$A-2^p=pm$$
, $A=pm+2^p\cdots 2$

さて、 2^p を p で割った余りを求めるために、(2)と同様に二項定理を利用すると、

$$2^{p} = (1+1)^{p} = \sum_{k=1}^{p-1} {}_{p}C_{k} + 1^{p} + 1^{p} = 2 + \sum_{k=1}^{p-1} {}_{p}C_{k}$$

すると、 $1 \le k \le p-1$ のとき ${}_p C_k$ は p の倍数より、 2^p を p で割った余りは 2 を p で割った余りに等しいので、素数 p を p=2 と $p \ge 3$ で場合分けをする。

- (i) p=2のとき このとき, $A=(a+2)^2-a^2=4(a+1)$ となる。 これより, A を 2p=4 で割った余りは 0 である。
- (ii) $p \ge 3$ のとき 2^p を p で割った余りは 2 より、②から、n を整数として、

$$A = pm + (pn + 2) = p(m+n) + 2 \cdots 3$$

①③より、2l = p(m+n) + 2から2(l-1) = p(m+n)

2 と p は互いに素なので、i を整数として、l-1=pi (l=pi+1)と表せるので、

$$A = 2(pi+1) = 2pi+2$$

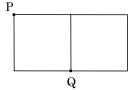
よって, Aを2pで割った余りは2である。

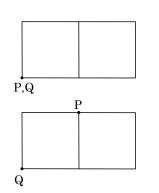
[解 説]

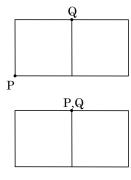
二項定理の絡んだ整数問題です。誘導が細かく付いていますので、それに従って解いていけばよいでしょう。なお、(3)は 2^p をpで割った余りがポイントです。

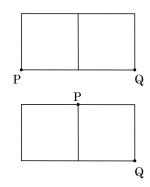
問題のページへ

(1) 条件より、時刻 0 での点 P, Q の配置が右図のとき、点 P, P Q は独立に、今いる頂点と辺で結ばれている頂点に等確率で 移動するので、時刻 1 での点 P, Q の可能な配置は、次の 6 パ ターンである。









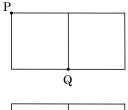
(2) まず, 時刻 1 までに 2 点 P, Q が同時に同じ頂点にいることがなく, かつ時刻 1に2点P,Qがともに同じ正方形上にいるのは,時刻1での左下,中上,右下の図の 場合より、その確率 a_1 は $a_1 = \frac{3}{c} = \frac{1}{2}$ である。

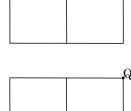
また, 時刻 1 までに 2 点 P, Q が同時に同じ頂点にいることがなく, かつ時刻 1に 2 点 P, Q が異なる正方形上にいるのは、時刻 1 での右上の図の場合より、その 確率 b_1 は $b_1 = \frac{1}{c}$ である。

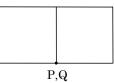
ここで、対称性を考慮すると、一般的に 2 点 P, Q が同じ正方形の異なる頂点に いるのは、その正方形の対角線上に位置する場合であり、これを状態 X とする。ま た、2点 P、Q が異なる正方形の頂点にいるのは、辺 CD について対称の位置にある 場合であり、これを状態 Y とする。

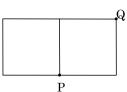
すると, 時刻 0 から時刻 1 への状態から, 一般的に $X \rightarrow X$ の推移確率は $\frac{1}{2}$, $X \rightarrow Y$ の推移確率は $\frac{1}{c}$ となる。

また, 時刻 1 での右上図の点 P, Q の配置から、時刻 2 での点 P, Q の可能な配置は、右の4パターンで ある。すると、一般的に $Y \rightarrow X$ の推 移確率は $\frac{2}{4} = \frac{1}{2}$, Y→Y の推移確率 $t^{\frac{1}{4}}$ となる。



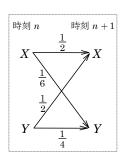






まとめると、状態の推移は右図となり、n=1のときは、

$$a_2 = \frac{1}{2}a_1 + \frac{1}{2}b_1 = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{3}$$
$$b_2 = \frac{1}{6}a_1 + \frac{1}{4}b_1 = \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{6} = \frac{1}{8}$$



(3) (2)と同様にして、

$$a_{n+1} = \frac{1}{2}a_n + \frac{1}{2}b_n \cdots 0, \ b_{n+1} = \frac{1}{6}a_n + \frac{1}{4}b_n \cdots 0$$

- (4) $p_n \leq \left(\frac{3}{4}\right)^n$ であることを、数学的帰納法を用いて示す。
 - (i) n=1 のとき $p_1=a_1+b_1=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}\leq \frac{3}{4}$ となり、成り立っている。
 - (ii) n = k のとき $p_k \le \left(\frac{3}{4}\right)^k$ と仮定すると、①②から、 $p_{k+1} = a_{k+1} + b_{k+1} = \left(\frac{1}{2}a_k + \frac{1}{2}b_k\right) + \left(\frac{1}{6}a_k + \frac{1}{4}b_k\right) = \frac{2}{3}a_k + \frac{3}{4}b_k$ $\le \frac{3}{4}a_k + \frac{3}{4}b_k = \frac{3}{4}(a_k + b_k) = \frac{3}{4}p_k \le \left(\frac{3}{4}\right)^{k+1}$

よって、n=k+1のときも成り立っている。

(i)(ii)より、
$$p_n \leq \left(\frac{3}{4}\right)^n$$
である。

[解 説]

確率と漸化式の問題です。問題文の読解力が要求されるとともに,答案の記述についてもかなりのエネルギーが費やされます。