2025 入試対策 過去問ライブラリー

名古屋大学

文系数学 25か年

2000 - 2024

外林 康治 編著

電送数学舎

2025 入試対策

名古屋大学

文系数学 25 か年

まえがき

本書には、2000 年度以降に出題された名古屋大学(前期日程)の文系数学の全問題とその解答例を掲載しています。

過去問から入試傾向をつかみ、そして演習をスムーズに進めるために、新課程入試 に対応した内容分類を行いました。融合題の配置箇所は鍵となっている分野です。

注 「複素数平面」は範囲外ですので除外しました。

電子書籍の概略

- 1 本書のフォーマットは PDF です。閲覧には、「Adobe Acrobat Reader」などの PDF Viewer が必要になります。
- 2 問題と対応する解答例のページの間には、リンクが張られています。リンク元は、問題編の 1, 2,…などの問題番号、解答編の 問題 の文字です。
- 3 2018 年度以降に出題された問題は、その解答例の動画解説を YouTube で配信しています。リンク元は、解答編の解答例+映像解説です。

目 次

分野別問題一覧
数学公式集
分野別問題と解答例 29
関 数
微分と積分 36
図形と式
図形と計量
ベクトル
整数と数列92
確 率
論 証 ···································

分野別問題一覧

関 数/微分と積分/図形と式 図形と計量/ベクトル

整数と数列/確率/論証

- **1** 次の問いに答えよ。
- (1) 方程式 $x^3 3x^2 50 = 0$ の実数解をすべて求めよ。
- (2) 実数 p, q が p+q=pq を満たすとする。 X=pq とおくとき, p^3+q^3 を X で表せ。
- (3) 条件 $p^3+q^3=50$, $\frac{1}{p}+\frac{1}{q}=1$, p< q を満たす 0 でない実数の組(p, q)をすべて求めよ。 [2024]

2 4 つの実数を $\alpha = \log_2 3$, $\beta = \log_3 5$, $\gamma = \log_5 2$, $\delta = \frac{3}{2}$ とおく。以下の問いに答えよ。

- (1) $\alpha\beta\gamma = 1$ を示せ。
- (2) α , β , γ , δ を小さい順に並べよ。
- (3) $p = \alpha + \beta + \gamma$, $q = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ とし, $f(x) = x^3 + px^2 + qx + 1$ とする。このとき $f\left(-\frac{1}{2}\right)$, f(-1) および $f\left(-\frac{3}{2}\right)$ の正負を判定せよ。 [2021]
- **3** 次の問いに答えよ。
- (1) $(\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}})^2$ を計算し、2 重根号を用いない形で表せ。
- (2) $\alpha = \sqrt{13} + \sqrt{9 + 2\sqrt{17}} + \sqrt{9 2\sqrt{17}}$ とするとき、整数係数の 4 次多項式 f(x) で $f(\alpha) = 0$ となるもののうち、 x^4 の係数が 1 であるものを求めよ。
- (3) 8 つの実数 $\pm\sqrt{13}\pm\sqrt{9+2\sqrt{17}}\pm\sqrt{9-2\sqrt{17}}$ (ただし、複号 \pm はすべての可能性にわたる)の中で、(2)で求めた f(x)に対して方程式 f(x)=0の解となるものをすべて求めよ。 [2015]
- **4** p を実数とする。方程式 $x^4 + (8-2p)x^2 + p = 0$ が相異なる 4 個の実数解をもち、これらの解を小さい順に並べたとき、それらは等差数列をなすとする。この p を求めよ。 [2007]

- **5** (1) 複素数 z を未知数とする方程式 $z^6 = 64$ の解をすべて求めよ。
- (2) (1)で求めた解z = p + qi (p, q は実数) のうち, 次の条件を満たすものをすべて 求めよ。

条件: x を未知数とする 3 次方程式 $x^3 + \sqrt{3}qx + q^2 - p = 0$ が、整数の解を少なくとも 1 つもつ。 [2005]

6 関数 f(x) = -|2x-1|+1 (0 $\leq x \leq 1$) を用いて、関数 g(x) = -|2f(x)-1|+1 (0 $\leq x \leq 1$) を考える。0 < c < 1 のとき、g(x) = c を満たすx を求めよ。 [2001]

- **1** a を 実 数 と し, 2 つ の 関 数 $f(x) = x^3 (a+2)x^2 + (a-2)x + 2a + 1$ と $g(x) = -x^2 + 1$ を考える。
- (1) f(x)-g(x) を因数分解せよ。
- (2) y = f(x)と y = g(x) のグラフの共有点が 2 個であるような a を求めよ。
- (3) a は(2)の条件を満たし、さらに f(x)の極大値は 1 よりも大きいとする。 y = f(x)と y = g(x)のグラフを同じ座標平面に図示せよ。 [2023]
- **2** *a*, *b* を実数とする。
- (1) 整式 x^3 を2次式 $(x-a)^2$ で割ったときの余りを求めよ。
- (2) 実数を係数とする 2 次式 $f(x) = x^2 + \alpha x + \beta$ で整式 x^3 を割ったときの余りが 3x + b とする。b の値に応じて、このような f(x) が何個あるかを求めよ。 [2022]
- **3** a, b を実数とし、放物線 $y = \frac{1}{2}x^2$ を C_1 、放物線 $y = -(x-a)^2 + b$ を C_2 とする。
- (1) $C_1 \geq C_2$ が異なる 2 点で交わるための a, b の条件を求めよ。 以下, $C_1 \geq C_2$ は異なる 2 点で交わるとし, $C_1 \geq C_2$ で囲まれた図形の面積を S とする。
- (2) S=16 となるための a,b の条件を求めよ。
- (3) a, b は $b \le a+3$ を満たすとする。このとき S の最大値を求めよ。 [2022]

名古屋大学・文系 分野別問題 (2000-2024)

- **4** a を正の実数とする。放物線 $y = x^2$ を C_1 ,放物線 $y = -x^2 + 4ax 4a^2 + 4a^4$ を C_2 とする。以下の問いに答えよ。
- (1) 点 (t, t^2) における C_1 の接線の方程式を求めよ。

以下, a は(2)で求めた範囲にあるとし, l, l' を C_1 と C_2 の異なる 2 つの共通接線とする。

- (3) 1, 1'の交点の座標を求めよ。
- (4) C_1 と l , l' で囲まれた領域を D_1 とし,不等式 $x \le a$ の表す領域を D_2 とする。 D_1 と D_2 の共通部分の面積 S(a) を求めよ。 [2021]
- **| 5**| a を実数として $f(x) = 2x^2 2ax a^2$ とおく。以下の問いに答えよ。
- (1) 方程式 f(x) = 0 の解 t が、必ず $-1 \le t \le 1$ をみたすための a の条件を求めよ。
- (2) (1)で求めた条件をみたす a に対して、 $S(a) = \int_{-1}^{1} |f(x)| dx$ とおく。S(a) の値を求めよ。
- (3) S(a) の値が最小となる a を求めよ。 [2020]
- **6** a を実数とし、関数 $f(x) = x^2 + ax a$ と $F(x) = \int_0^x f(t)dt$ を考える。関数 y = F(x) f(x) のグラフが x 軸と異なる 3 点で交わるための a の条件を求めよ。

[2019]

- **7** a を正の定数とする。2 次関数 $f(x) = ax^2$ と 3 次関数 $g(x) = x(x-4)^2$ について、次の問いに答えよ。
- (1) 関数 y = g(x) について、極値を求め、そのグラフを描け。
- (2) 2 つの曲線 y = f(x)と y = g(x) は相異なる 3 点で交わることを示せ。
- (3) 2 つの曲線 y = f(x) と y = g(x) で囲まれた 2 つの部分の面積が等しくなるように a の値を定めよ。またそのとき、2 つの曲線の交点の x 座標を求めよ。 [2017]

- 图 平面上に同じ点 O を中心とする半径 1 の円 C_1 と半径 2 の円 C_2 があり, C_1 の周上に定点 A がある。点 P,Q はそれぞれ C_1 , C_2 の周上を反時計回りに動き,ともに時間 t の間に弧長 t だけ進む。時刻 t=0 において,P は A の位置にあって O,P,Q はこの順に同一直線上に並んでいる。 $0 \le t \le 4\pi$ のとき $\triangle APQ$ の面積の 2 乗の最大値を求めよ。
- **9** (1) 関数 $y = x^3 x^2$ のグラフをかけ。
- (2) 曲線 $y = x^3 x^2$ の接線で、点 $\left(\frac{3}{2}, 0\right)$ を通るものをすべて求めよ。
- (3) p を定数とする。x の 3 次方程式 $x^3-x^2=p\left(x-\frac{3}{2}\right)$ の異なる実数解の個数を求めよ。 [2011]
- **10** 関数 f(x) を、 $f(x) = \begin{cases} 1 & (x \ge 0) \\ 0 & (x < 0) \end{cases}$ により定める。
- (1) a, b は実数とする。 y = ax + b のグラフと y = f(x) のグラフがちょうど 2 つの交点をもつための a, b に対する条件を求めよ。
- (2) p, q は実数でp>0 とする。 $y=x^3+6px^2+9p^2x+q$ のグラフと y=f(x) のグラフがちょうど 4 つの交点をもつための p, q に対する条件を求め, pq 平面上に図示せよ。
- **11** 2 つの放物線 $C: y = \frac{1}{2}x^2$, $D: y = -(x-a)^2$ を考える。a は正の実数である。
- (1) C上の点 $\mathbf{P}\left(t, \frac{1}{2}t^2\right)$ におけるCの接線lを求めよ。
- (2) l がさらに D と接するとき, l を C と D の共通接線という。2 本の(C と D の) 共通接線 l_1 , l_2 を求めよ。
- (3) 共通接線 l_1 , l_2 と C で囲まれた図形の面積を求めよ。 [2007]
- **12** $0 \le k \le 1$ を満たす実数 k に対して、xy 平面上に次の連立不等式で表される 3 つの領域 D, E, F を考える。

D は連立不等式 $y \ge x^2$, $y \le kx$ で表される領域 E は連立不等式 $y \le x^2$, $y \ge kx$ で表される領域 F は連立不等式 $y \le -x^2 + 2x$, $y \ge kx$ で表される領域

- (1) 領域 $D \cup (E \cap F)$ の面積m(k)を求めよ。
- (2) (1)で求めた面積m(k)を最小にするkの値と、その最小値を求めよ。 [2006]

名古屋大学・文系 分野別問題 (2000-2024)

- **13** 放物線 $R: y = -x^2 + 6$ と直線 l: y = x との交点を A, B とする。直線 y = x + t (t>0) は放物線 R と相異なる 2 点 C(t), D(t) で交わるものとする。
- (1) 放物線 R と直線 l とで囲まれた図形の面積 T を求めよ。
- (2) 4 つの点 A, B, C(t), D(t) を頂点とする台形の面積をS(t) とし, $f(t) = \frac{S(t)}{T}$ とおく。f(t) の最大値を求めよ。 [2005]
- **14** a を実数とする。 $f(x) = x^3 + ax^2 + (3a 6)x + 5$ について以下の問いに答えよ。
- (1) 関数 y = f(x) が極値をもつ a の範囲を求めよ。
- (2) 関数 y = f(x) が極値をもつ a に対して、関数 y = f(x) は x = p で極大値、x = q で極小値をとるとする。 関数 y = f(x) のグラフ上の 2 点 P(p, f(p)) 、 Q(q, f(q)) を結ぶ直線の傾き m を a を用いて表せ。 [2004]
- **15** 放物線 $C: y = ax^2 (a>0)$ を考える。放物線 C 上の点 $P(p, ap^2) (p \neq 0)$ における C の接線と直交し,P を通る直線を l とする。直線 l と放物線 C で囲まれる図形の面積を S(P) とする。
- (1) 直線 *l* の方程式を求めよ。
- (2) 点 P を p>0 の範囲で動かす。S(P) が最小となるときの,直線 l の傾き m と S(P) を求めよ。 [2003]
- **16** a, b, c は定数とし, a > 0 とする。
- (1) 曲線 $y = -ax^3 + bx + c$ の接線で、点(0, t)(t は実数)を通るものがただ 1 本存在することを示せ。
- (2) (1)の接線が正の傾きをもつためのtの範囲を求めよ。 [2001]
- **17** a, b を実数とする。xy 平面上で,直線l: y = ax + b は曲線C: y = (x + 1)(2 x) と、x 座標が $0 \le x \le 2$ を満たす点で接しているとする。
- (1) このときの点(a, b)の存在範囲を求め,ab 平面上に図示せよ。
- (2) 曲線 C および 3 つの直線 l, x = 0, x = 2 で囲まれた図形の面積を最小にする a, b の値と, このときの面積を求めよ。 [2000]

- **1** $t \ge 0$ でない実数として, x の関数 $y = -x^2 + tx + t$ のグラフを C とする。
- (1) C上において γ 座標が最大となる点Pの座標を求めよ。
- (2) $P \& L \otimes O(0, 0)$ を通る直線を $l \& V \otimes O(0, 0)$ を可能の意となる $l \& V \otimes O(0, 0)$ を可能の意
- (3) t は(2)の条件を満たすとする。 A(-1, -2) として, $X = \frac{1}{4}t^2 + t$ とおくとき, $AP^2 AQ^2$ を X で表せ。また,AP < AQ となるために t が満たすべき条件を求めよ。 [2024]
- $oxed{2}$ a,b を実数とし、少なくとも一方は 0 でないとする。このとき、次の問いに答えよ。
- (1) 連立不等式 $3x + 2y + 4 \ge 0$, $x 2y + 4 \ge 0$, $ax + by \ge 0$ の表す領域, または連立不等式 $3x + 2y + 4 \ge 0$, $x 2y + 4 \ge 0$, $ax + by \le 0$ の表す領域が三角形であるために a, b が満たすべき条件を求めよ。さらに、その条件を満たす点 (a, b) の範囲を座標平面上に図示せよ。
- (2) (1)の三角形の面積をSとするとき, Sをa, bを用いて表せ。
- (3) $S \ge 4$ を示せ。 [2018]
- **3** 曲線 $y = x^2$ 上に 2 点 A(-1, 1), $B(b, b^2)$ をとる。ただしb > -1 とする。このとき,次の条件を満たす b の範囲を求めよ。

条件: $y = x^2$ 上の点 $\mathbf{T}(t, t^2)$ (-1<t<b) で、 \angle ATB が直角になるものが存在する。 [2016]

- 4 座標平面上の円 $C: x^2 + (y-1)^2 = 1$ と、x 軸上の 2 点 P(-a, 0), Q(b, 0) を考える。ただし、a>0,b>0, $ab \ne 1$ とする。点 P,Q のそれぞれから C に x 軸とは異なる接線を引き、その 2 つの接線の交点を R とする。このとき、次の問いに答えよ。
- (1) 直線 QR の方程式を求めよ。
- (2) R の座標を a, b で表せ。
- (3) Rのy座標が正であるとき、 $\triangle PQR$ の周の長さをTとする。Tをa, b で表せ。
- (4) 2 点 P, Q が、条件「PQ = 4 であり、R の y 座標は正である」を満たしながら動く とき、T を最小とする a の値とそのときの T の値を求めよ。 [2015]

名古屋大学・文系 分野別問題 (2000-2024)

- **5** 原点を中心とする半径 1 の円を C とし、x 軸上に点 P(a, 0) をとる。ただし a>1 とする。P から C へ引いた 2 本の接線の接点を結ぶ直線が x 軸と交わる点を Q とする。
- (1) **Q**の x 座標を求めよ。
- (2) 点 R が C 上にあるとき、 $\frac{PR}{QR}$ が R によらず一定であることを示し、その値を a を用いて表せ。
- (3) C 上の点 R が $\angle PRQ = 90^\circ$ を満たすとする。このような R の座標と線分 PR の長さを求めよ。 [2014]
- |**6**| 実数 t に対して 2 点 $P(t, t^2)$, $Q(t+1, (t+1)^2)$ を考える。
- (1) 2 点 P, Q を通る直線 *l* の方程式を求めよ。
- (2) a を定数とし、直線x = a と l の交点の y 座標を t の関数と考えて f(t) とおく。 t が $-1 \le t \le 0$ の範囲を動くときの f(t) の最大値を a を用いて表せ。
- (3) t が $-1 \le t \le 0$ の範囲を動くとき、線分 PQ が通過してできる図形を図示し、その面積を求めよ。 [2014]
- |7| xy 平面上に、点(0, 1) を通り、傾きが h の直線 l がある。
- (1) xy 平面において, l に関して点 P(a, b) と対称な点を Q(s, t) とする。このとき,a, b, h を用いて s, t を表せ。ただし,点 P(a, b) は l 上にないとする。
- (2) xy 平面において、l に関して原点 O(0, 0) と対称な点を A とする。h が $-1 \le h \le 1$ の範囲を動くとき、線分 OA の長さの最大値と最小値を求めよ。
- (3) h が $-1 \le h \le 1$ の範囲を動くときの点 A の軌跡を C とする。C と直線 y=1 で囲まれた図形の面積を求めよ。 [2012]
- **8** xy 平面上に 3 点 O(0, 0), A(1, 0), B(0, 1) がある。
- (1) a>0 とする。 OP: AP=1: a を満たす点 P の軌跡を求めよ。
- (2) a>1>b>0 とする。 OP: AP: BP=1:a:b を満たす点 P が存在するための a,b に対する条件を求め、ab 平面上に図示せよ。 [2011]

- **9** *xy* 平面上の長方形 ABCD が次の条件(a), (b), (c)を満たしているとする。
 - (a) 対角線 AC と BD の交点は原点 O に一致する。
 - (b) 直線 AB の傾きは 2 である。
 - (c) Aのy座標は,B,C,Dのy座標より大きい。 このとき,a>0,b>0として,辺ABの長さを $2\sqrt{5}a$,BCの長さを $2\sqrt{5}b$ とおく。
- (1) A, B, C, D の座標を a, b で表せ。
- (2) 長方形 ABCD が領域 $x^2 + (y-5)^2 \le 100$ に含まれるための a, b に対する条件を求め, ab 平面上に図示せよ。 [2010]
- **10** 放物線 $y = ax^2$ (a > 0) と円 $(x b)^2 + (y 1)^2 = 1$ (b > 0)が,点 P(p, q) で接しているとする。ただし,0 とする。この円の中心 <math>Q から x 軸に下ろした垂線とx 軸との交点を R としたとき, $\angle PQR = 120^\circ$ であるとする。ここで,放物線と円が点P で接するとは,P が放物線と円の共有点であり,かつ点 P における放物線の接線と点P における円の接線が一致することである。
- (1) *a*, *b* の値を求めよ。
- (2) 点 P と点 R を結ぶ短い方の弧と x 軸, および放物線で囲まれた部分の面積を求めよ。 [2009]
- **11** 2つの円 $x^2 + (y-2)^2 = 9 \ge (x-4)^2 + (y+4)^2 = 1$ に外接し、直線x = 6 に接する円を求めよ。ただし、2つの円がただ 1 点を共有し、互いに外部にあるとき、外接するという。
- **12** 次の不等式の表す領域を D とする。 $(x-2)^2 + |2x+3y-1| \le 4$
- (1) *D* の概形を描き, その面積を求めよ。
- (2) 点(x, y)が D 内を動くとき、x+yの最大値と最小値およびそれらの値をとる点の座標を求めよ。 [2008]
- **13** xy 平面上に点A(2, 4) がある。平面上の直線 l に関して点A と対称な点が x 軸上にあるとき,直線 l をピッタリ直線と呼ぶことにする。
- (1) 点 P(p, q) を通るピッタリ直線 l があるとし, l に関して A と対称な点を A'(t, 0) とするとき, p, q, t の間に成り立つ関係式を求めよ。
- (2) ピッタリ直線が 2本通る点 P(p, q) の存在範囲を求め、それを図示せよ。
- (3) 点 P(p, q) を通る 2 本のピッタリ直線が直交するような点 P(p, q) の存在範囲を求め、それを図示せよ。 [2006]

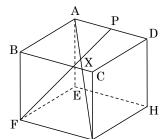
14 O を原点とする座標平面上の曲線 $y = x^2$ 上の 2 点 A, B に対し, $\overrightarrow{OA} \cdot \overrightarrow{OB} = t$ と おく。

- (1) t のとり得る値の範囲を求めよ。
- (2) t = 2 のとき, $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB}$ となる点 P の軌跡を求め, 図示せよ。 [2002]

15 a, b を正定数とし、平面ベクトル $\overrightarrow{OA} = (2a, a)$ 、 $\overrightarrow{OB} = (0, 2b)$ を考える。線分 OB の中点を C とする。直線 OA、OB 上にない平面上の点 P に対し、点 P を通り、直線 OB に平行な直線と直線 OA との交点を Q とし、点 P を通り、直線 OA に平行な直線と直線 OB との交点を R とすると、 $\overrightarrow{OQ} = s\overrightarrow{OA}$ 、 $\overrightarrow{OR} = t\overrightarrow{OB}$ と表される。ただし、s、t は実数である。

- (1) k を正定数とするとき、 $t = (s-k)^2$ を満たす点 P のなす曲線 F の方程式を求めよ。
- (2) 直線 AC が F と接するとき, k の値を求めよ。

1 図のような 1 辺の長さが 1 の立方体 ABCD-EFGH に おいて, 辺 AD 上に点 P をとり, 線分 AP の長さを p とする。このとき, 線分 AG と線分 FP は四角形 ADGF 上で交わる。その交点を X とする。



- (1) 線分 AX の長さを p を用いて表せ。
- (2) 三角形 APX の面積をp を用いて表せ。
- (3) 四面体 ABPX と四面体 EFGX の体積の和を V とする。 V を p を用いて表せ。
- (4) 点 P を辺 AD 上で動かすとき、V の最小値を求めよ。

[2023]

[2001]

- **2** 辺の長さがそれぞれ AB = 10, BC = 6, AC = 8 の $\triangle ABC$ がある。辺 AB 上に 点 P, 辺 AC 上の点 Q を, $\triangle APQ$ の面積が $\triangle ABC$ の面積の $\frac{1}{2}$ になるようにとる。
- (1) 2 辺の長さの和 AP + AQ を u とおく。 $\triangle APQ$ の周の長さ l を u を用いて表せ。
- (2) l が最小になるときの AP, AQ, l の値を求めよ。 [2002]

- **1** (1) 平面上に $|\overrightarrow{OP}| = |\overrightarrow{OQ}| = |\overrightarrow{OR}| = 1$ をみたす相異なる 4 点 O, P, Q, R がある。 このとき $|\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}| = 0$ ならば、三角形 PQR は正三角形であることを示せ。
- (2) 空間内に $|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| = |\overrightarrow{OD}| = 1$ をみたす相異なる 5 点 O, A, B, C, D がある。また O から A, B, C を含む平面におろした垂線の足を H とする。このとき,以下の 2 つの命題を示せ。
 - 命題(i) $|\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}| = 3|\overrightarrow{OH}|$ ならば, 三角形 ABC は正三角形である。
 - 命題(ii) $|\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}| = 0$ かつ $|\overrightarrow{OH}| = \frac{1}{3}$ ならば、四面体 ABCD は正四面体である。 [2020]
- ② 空間のベクトル $\overrightarrow{OA} = (1, 0, 0), \overrightarrow{OB} = (a, b, 0), \overrightarrow{OC}$ が、条件 $|\overrightarrow{OB}| = |\overrightarrow{OC}| = 1, \overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{1}{3}, \overrightarrow{OA} \cdot \overrightarrow{OC} = \frac{1}{2}, \overrightarrow{OB} \cdot \overrightarrow{OC} = \frac{5}{6}$

を満たしているとする。ただし, a, b は正の数とする。

- (1) a, b の値を求めよ。
- (2) 三角形 OAB の面積 S を求めよ。
- (3) 四面体 OABC の体積 Vを求めよ。

[2009]

- **3** \triangle ABC の辺 AB, BC, CA を2:1に内分する点をそれぞれ A', B', C' とし, \triangle A'B'C' の辺 A'B', B'C', C'A'を2:1に内分する点をそれぞれ A", B", C" とする。 このとき直線 AA", BB", CC" は \triangle ABC の重心で交わることを証明せよ。 [2007]
- $oxed{4}$ $\triangle OAB$ の頂角 $\angle O$ の二等分線と辺 AB との交点を P, 点 P から直線 OA へ下ろした垂線の足を Q とする。以下では、 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ とする。
- (1) P は線分 AB を $|\vec{a}|$: $|\vec{b}|$ に内分する点であることを証明せよ。
- (2) 線分の長さ \mathbf{OQ} を \vec{a} , \vec{b} を用いて表せ。

[2003]

- 重標空間内に 4 点 P(3, 1, 4), A(1, 2, 3), B(1, 1, 2), C(2, 1, 1) がある。直線 PA と xy 平面の交点を A', 直線 PB と xy 平面の交点を B', 直線 PC と xy 平面の交点を C' とする。
- (1) △ABC の面積を求めよ。
- (2) △A'B'C' の面積を求めよ。

[2000]

- **1** xy 平面において x, y がともに整数となる点(x, y) を格子点という。正の整数 n に対して, $x \ge 0$, $y \ge 0$, $x + y \le n$ で定まる領域を D とする。4 つの頂点がすべて D に含まれる格子点であり,x 軸と平行な辺をもつ長方形の数を R(n) とする。また,そのなかで特に 1 つの辺が x 軸上にある長方形の数を S(n) とする。以下の問いに答えよ。
- (1) R(3)とR(4)を求めよ。
- (2) S(n)を求めよ。
- (3) R(n) を求めよ。
- (4) R(n) = 1001 となる n を求めよ。

[2020]

2 非負の整数 n に対して P_n を xy 平面上の点とする。 P_0 の座標を(1, 0) とし, P_n の座標 (x_n, y_n) と P_{n+1} の座標 (x_{n+1}, y_{n+1}) は

$$x_{n+1} = x_n - k(y_n + y_{n+1}), \quad y_{n+1} = y_n + k(x_n + x_{n+1})$$

を満たすとする。ただしkを正の実数とする。

- (1) $k = \tan\left(\frac{\alpha}{2}\right)$ とする。ただし $0 < \alpha < \pi$ とする。このとき P_1 , P_2 の座標 (x_1, y_1) , (x_2, y_2) を α を用いて表せ。
- (2) P_n の座標 (x_n, y_n) を(1)の α とnを用いて表せ。
- (3) $O \in xy$ 平面の原点とするとき、三角形 P_nOP_{n+1} の面積を k を用いて表せ。

[2019]

- **3** 次の問いに答えよ。
- (1) 整数 α , β の少なくとも一方が奇数のとき, $\alpha^2 + \alpha\beta + \beta^2$ は奇数であることを示せ。
- (2) n を奇数とする。このとき $\alpha^2 + \alpha\beta + \beta^2 = 2n$ を満たす整数 α , β は存在しないことを示せ。
- (3) c を実数とする。このとき 3 次方程式 $x^3-2018x+c=0$ の解のうち整数である ものは 1 個以下であることを示せ。 [2018]

- **4** 次の問いに答えよ。
- (1) 次の条件(*)を満たす3つの自然数の組(a, b, c)をすべて求めよ。

(*)
$$a < b < c$$
 かつ $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2}$ である。

- (2) 偶数 2n $(n \ge 1)$ の 3 つの正の約数 p, q, r で, p > q > r と p + q + r = n を満たす $\mathfrak{U}(p, q, r)$ の個数を f(n) とする。ただし,条件を満たす組が存在しない場合は, f(n) = 0 とする。n が自然数全体を動くときの f(n) の最大値 M を求めよ。また, f(n) = M となる自然数 n の中で最小のものを求めよ。
- **5** 正の整数 n に対して、その(1 と自分自身も含めた)すべての正の約数の和をs(n) とかくことにする。このとき、次の問いに答えよ。
- (1) k を正の整数, p を 3 以上の素数とするとき, $s(2^k p)$ を求めよ。
- (2) s(2016)を求めよ。
- (3) 2016 の正の約数 n で、s(n) = 2016 となるものをすべて求めよ。 [2016]
- **6** k, m, n は整数とし、 $n \ge 1$ とする。 ${}_m \mathbf{C}_k$ を二項係数として、 $S_k(n)$ 、 $T_m(n)$ を以下のように定める。

$$\begin{split} S_k(n) &= 1^k + 2^k + 3^k + \dots + n^k, \quad S_k(1) = 1 \quad (k \ge 0) \\ T_m(n) &= {}_m \mathbf{C}_1 \, S_1(n) + {}_m \mathbf{C}_2 \, S_2(n) + {}_m \mathbf{C}_3 \, S_3(n) + \dots + {}_m \mathbf{C}_{m-1} \, S_{m-1}(n) \\ &= \sum_{k=1}^{m-1} {}_m \mathbf{C}_k \, S_k(n) \quad (m \ge 2) \end{split}$$

- (1) $T_m(1)$ と $T_m(2)$ を求めよ。
- (2) 一般のnに対して $T_m(n)$ を求めよ。
- (3) p が 7 以上の素数のとき、 $S_1(p-1)$ 、 $S_2(p-1)$ 、 $S_3(p-1)$ 、 $S_4(p-1)$ はp の倍数であることを示せ。 [2013]
- **7** *m* を正の奇数とする。
- (1) $(x-1)^{101}$ の展開式における x^2 の項の係数を求めよ。
- (2) p を正の整数とするとき, $(p-1)^m + 1$ は p で割り切れることを示せ。
- (3) r を正の整数とし、 $s=3^{r-1}m$ とする。 2^s+1 は 3^r で割り切れることを示せ。

[2012]

- 8 次の問いに答えよ。
- (1) $3x + 2y \le 8$ を満たす 0以上の整数の組(x, y)の個数を求めよ。
- (2) $3x + 2y \le 2008$ を満たす 0 以上の整数の組(x, y) の個数を求めよ。 [2008]

名古屋大学・文系 分野別問題 (2000-2024)

9 n を自然数とするとき、 $m \le n$ で m と n の最大公約数が 1 となる自然数 m の個数を f(n) とする。

- (1) f(15)を求めよ。
- (2) p, q を互いに異なる素数とする。このとき f(pq) を求めよ。 [2003]

10 次のように円 C_n を定める。ます, C_0 は $\left(0,\frac{1}{2}\right)$ を中心とする半径 $\frac{1}{2}$ の円, C_1 は $\left(1,\frac{1}{2}\right)$ を中心とする半径 $\frac{1}{2}$ の円とする。次に C_0 , C_1 に外接しx 軸に接する円を C_2 とする。さらに,n=3,4,5,…に対し,順に, C_0 , C_{n-1} に外接しx 軸に接する円で C_{n-2} でないものを C_n とする。 C_n ($n \ge 1$)の中心の座標を (a_n,b_n) とするとき,次の問いに答えよ。ただし,2 つの円が外接するとは,中心間の距離がそれぞれ円の半径の和に等しいことをいう。

(1) $n \ge 1$ に対し、 $b_n = \frac{{a_n}^2}{2}$ を示せ。

(2) a_n を求めよ。 [2002]

11 自然数 n に対して、不等式 $0 \le a \le 2b \le c \le n$ を満たす整数の組(a, b, c)の個数 $extit{$P(n)$}$ とする。

- (1) P(5)を求めよ。
- (2) 奇数 n に対して、P(n) を求めよ。 [2000]

- **1** n を自然数とする。表と裏が出る確率がそれぞれ $\frac{1}{2}$ のコインを n 回投げ、以下のように得点を決める。
 - ・最初に数直線上の原点に石を置き、コインを投げて表なら 2、裏なら 3 だけ数直線上を正方向に石を移動させる。コインを k 回投げた後の石の位置を a_k とする。
 - ・ $a_n \neq 2n+2$ の場合は得点を 0, $a_n = 2n+2$ の場合は得点を $a_1 + a_2 + \cdots + a_n$ とする。

たとえば、n=3のとき、投げたコインが 3 回とも表のときは得点は 0、投げたコインが順に裏、裏、表のときは得点は3+6+8=17である。

- (1) n回のうち裏の出る回数をrとするとき、 a_n を求めよ。
- (2) n=4 とする。得点が 0 でない確率および 25 である確率をそれぞれ求めよ。
- (3) n=9 とする。得点が 100 である確率および奇数である確率をそれぞれ求めよ。

[2024]

[2022]

2 数字 1 が書かれた球が 2 個,数字 2 が書かれた球が 2 個,数字 3 が書かれた球が 2 個,数字 4 が書かれた球が 2 個,合わせて 8 個の球が袋に入っている。カードを 8 枚用意し、次の試行を 8 回行う。

袋から球を1個取り出し、数字kが書かれていたとき、

- ・残っているカードの枚数がk以上の場合、カードを1枚取り除く。
- ・残っているカードの枚数がk未満の場合、カードは取り除かない。
- (1) 取り出した球を毎回袋の中に戻すとき,8回の試行のあとでカードが1枚だけ残っている確率を求めよ。
- (2) 取り出した球を袋の中に戻さないとき, 8 回の試行のあとでカードが残っていない確率を求めよ。 [2023]
- **3** 1つのサイコロを 3 回投げる。 1 回目に出る目を a, 2 回目に出る目を b, 3 回目に出る目を c とする。 なおサイコロは 1 から 6 までの目が等しい確率で出るものとする。
- (1) $ab+2c \ge abc$ となる確率を求めよ。
- (2) ab+2cと2abc が互いに素となる確率を求めよ。

4 1 から 12 までの数字が右の図のように並べて書かれている。以下のルール(a), (b)と(終了条件)を用いたゲームを行う。ゲームを開始すると、最初に(a)を行い,(終了条件)が満たされたならゲームを終了する。そうでなければ(終了条件)が満たされるまで(b)の操作を繰り返す。ただし、(a)と(b)における数字を選ぶ操作はすべて独立な試行とす

1	2	3	4	5
6	7	8	9	
10	11			,
12				

- (a) 1 から 12 までの数字のどれか 1 つを等しい確率で選び, 右の図において選ん だ数字を丸で囲み, その上に石を置く。
- (b) 石が置かれた位置の水平右側または垂直下側の位置にある数字のどれか1つを 等しい確率で選び、その数字を丸で囲み、そこに石を移して置く。例えば、石が6 の位置に置かれているときは、その水平右側または垂直下側の位置にある数字7、 8,9,10,12のどれか1つの数字を等しい確率で選び、その数字を丸で囲み、そこ に石を移して置く。

(終了条件) 5, 9, 11, 12 の数字のどれか 1 つが丸で囲まれ石が置かれている。 ゲーム終了時に数字 j が丸で囲まれている確率を p_i とする。以下の問いに答えよ。

(1) 確率 p₂ を求めよ。

る。

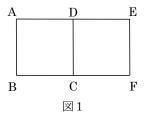
- (2) 確率 p₅ を求めよ。
- (3) 確率 *p*₁₁ を求めよ。

[2021]

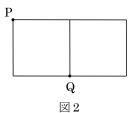
- **5** 1つのサイコロを 3 回投げる。1回目に出る目を a, 2回目に出る目を b, 3回目に出る目を c とする。なお、サイコロは 1 から c までの目が等確率で出るものとする。
- (1) 2次方程式 $x^2 bx + c = 0$ が少なくとも1つ整数解をもつ確率を求めよ。
- (2) 2次方程式 $\alpha x^2 bx + c = 0$ のすべての解が整数である確率を求めよ。
- (3) 2次方程式 $ax^2 bx + c = 0$ が少なくとも1つ整数解をもつ確率を求めよ。

[2019]

6 図 1 のように 2 つの正方形 ABCD と CDEF を並べた図 A 形を考える。 2 点 P, Q が 6 個の頂点 A, B, C, D, E, F を以下の 規則(a), (b)に従って移動する。



- (a) 時刻 0 では図 2 のように点 P は頂点 A に、点 Q は頂点 BC にいる。
- (b) 点 P, Q は時刻が 1 増えるごとに独立に、今いる頂点と 辺で結ばれている頂点に等確率で移動する。



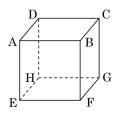
時刻nまで2点P,Qが同時に同じ頂点にいることが一度もない確率を p_n と表す。また時刻nまでに2点P,Qが同時に同じ頂点にいることが一度もなく、かつ時刻nに2点P,Qがと

もに同じ正方形上にいる確率を a_n と表し、 $b_n = p_n - a_n$ と定める。このとき、次の問いに答えよ。

- (1) 時刻 1 での点 P, Q の可能な配置を, 図 2 にならってすべて図示せよ。
- (2) a_1 , b_1 , a_2 , b_2 を求めよ。
- (3) a_{n+1} , b_{n+1} を a_n , b_n で表せ。

$$(4) \quad p_n \le \left(\frac{3}{4}\right)^n を示せ。$$
 [2018]

 $oldsymbol{7}$ 右図のような立方体がある。この立方体の 8 つの頂点の上を 点 P が次の規則で移動する。時刻 0 では点 P は頂点 A にいる。時 刻が 1 増えるごとに点 P は,今いる頂点と辺で結ばれている頂点 に等確率で移動する。たとえば時刻 n で点 P が頂点 H にいるとすると,時刻 n+1 では,それぞれ $\frac{1}{3}$ の確率で頂点 D, E, G のいずれ



かにいる。自然数 $n \ge 1$ に対して,(i) 点 P が時刻 n までの間一度も頂点 A に戻らず,かつ時刻 n で頂点 B,D,E のいずれかにいる確率を p_n ,(ii) 点 P が時刻 n までの間一度も頂点 A に戻らず,かつ時刻 n で頂点 C,F,H のいずれかにいる確率を q_n ,(iii) 点 P が時刻 n までの間一度も頂点 A に戻らず,かつ時刻 n で頂点 G にいる確率を r_n ,と する。このとき,次の問いに答えよ。

- (1) p_2 , q_2 , r_2 と p_3 , q_3 , r_3 を求めよ。
- (2) $n \ge 2$ のとき、 p_n 、 q_n 、 r_n を求めよ。
- (3) 自然数 $m \ge 1$ に対して、点 P が時刻2m で頂点 A に初めて戻る確率 s_m を求めよ。

[2017]

名古屋大学・文系 分野別問題 (2000-2024)

- **8** n を正の整数とし、k を $1 \le k \le n+2$ を満たす整数とする。n+2 枚のカードがあり、そのうちの 1 枚には数字 0 が、他の 1 枚には数字 2 が、残りの n 枚には数字 1 が書かれている。このn+2 枚のカードのうちから無作為に k 枚のカードを取り出すとする。このとき、次の問いに答えよ。
- (1) 取り出した k 枚のカードに書かれているすべての数字の積が 1 以上になる確率を求めよ。
- (2) 取り出した k 枚のカードに書かれているすべての数字の積が 2 となる確率 $Q_n(k)$ を求めよ。
- (3) 与えられた n に対して、確率 $Q_n(k)$ が最大となる k の値と、その最大値を求めよ。 [2016]
- **9** 数直線上にある 1, 2, 3, 4, 5 の 5 つの点と 1 つの石を考える。石がいずれかの点にあるとき、

(石が点1にあるならば、確率1で点2に移動する

石が点k (k=2, 3, 4) にあるならば、確率 $\frac{1}{2}$ で点k-1に、確率 $\frac{1}{2}$ で点k+1に移

動する

【石が点5にあるならば、確率1で点4に移動する

という試行を行う。石が点 1 にある状態から始め,この試行を繰り返す。試行を n 回繰り返した後に,石が点 k ($k=1,\ 2,\ 3,\ 4,\ 5$)にある確率を $P_n(k)$ とするとき,次の問いに答えよ。

- (1) n=6 のときの確率 $P_6(k)$ (k=1, 2, 3, 4, 5) をそれぞれ求めよ。
- (2) 石が移動した先の点に印をつける(点 1 には初めから印がついているものとする)。 試行を 6 回繰り返した後に、5 つの点すべてに印がついている確率を求めよ。
- (3) $n \ge 1$ のとき、 $P_n(3)$ を求めよ。 [2015]
- **10** 大小合わせて 2 個のサイコロがある。サイコロを投げると、1 から 6 までの整数 の目が等しい確率で出るとする。
- (1) 2 個のサイコロを同時に投げる。出た目の差の絶対値について、その期待値を求めよ。
- (2) 2 個のサイコロを同時に投げ、出た目が異なるときはそこで終了する。出た目が同じときには小さいサイコロをもう一度だけ投げて終了する。終了時に出ている目の差の絶対値について、その期待値を求めよ。 [2014]

- 11 3 人でジャンケンをする。各人はグー、チョキ、パーをそれぞれ $\frac{1}{3}$ の確率で出すものとする。負けた人は脱落し、残った人で次回のジャンケンを行い(アイコのときは誰も脱落しない)、勝ち残りが 1 人になるまでジャンケンを続ける。このとき各回の試行は独立とする。3 人でジャンケンを始め、ジャンケンが n 回目まで続いて n 回目終了時に 2 人が残っている確率を p_n 、3 人が残っている確率を q_n とおく。
- (1) p_1 , q_1 を求めよ。
- (2) p_n , q_n が満たす漸化式を導き, p_n , q_n の一般項を求めよ。
- (3) ちょうどn回目で1人の勝ち残りが決まる確率を求めよ。 [2013]
- 12 n を 2 以上の整数とする。1 から n までの整数が 1 つずつ書かれている n 枚のカードがある。ただし,異なるカードには異なる整数が書かれているものとする。この n 枚のカードから,1 枚のカードを無作為に取り出して,書かれた整数を調べてからもとに戻す。この試行を 3 回繰り返し,取り出したカードに書かれた整数の最小値を X,最大値を Y とする。次の問いに答えよ。ただし,j と k は正の整数で, $j+k \le n$ を満たすとする。また,s はn-1以下の正の整数とする。
- (1) $X \ge j$ かつ $Y \le j + k$ となる確率を求めよ。
- (2) X = iかつY = i + kとなる確率を求めよ。
- (3) Y-X=sとなる確率をP(s)とする。P(s)を求めよ。
- (4) n が偶数のとき、P(s) を最大にする s を求めよ。 [2012]
- 13 数字の 2 を書いた玉が 1 個,数字の 1 を書いた玉が 3 個,数字の 0 を書いた玉が 4 個あり、これら合計 8 個の玉が袋に入っている。以下の(1)から(3)のそれぞれにおいて、この状態の袋から 1 度に 1 個ずつ玉を取り出し、取り出した玉は袋に戻さないものとする。
- (1) 玉を2度取り出すとき、取り出した玉に書かれた数字の合計が2である確率を求めよ。
- (2) 玉を 4 度取り出すとき,取り出した玉に書かれた数字の合計が 4 以下である確率を求めよ。
- (3) 玉を 8 度取り出すとき、次の条件が満たされる確率を求めよ。 条件: すべての $n=1, 2, \cdots, 8$ に対して、1 個目から n 個目までの玉に書かれた 数字の合計はn以下である。 [2011]

14 はじめに、A が赤玉を 1 個、B が白玉を 1 個、C が青玉を 1 個持っている。 表裏の 出る確率がそれぞれ $\frac{1}{2}$ の硬貨を投げ、表が出れば A と B の玉を交換し、裏が出れば B と C の玉を交換する、という操作を考える。この操作を n 回($n=1, 2, 3, \cdots$)くり 返した後に A, B, C が赤玉を持っている確率をそれぞれ a_n , b_n , c_n とおく。

- (1) a_1 , b_1 , c_1 , a_2 , b_2 , c_2 を求めよ。
- (2) a_{n+1} , b_{n+1} , c_{n+1} を a_n , b_n , c_n で表せ。
- (3) n が奇数ならば $a_n = b_n > c_n$ が成り立ち、n が偶数ならば $a_n > b_n = c_n$ が成り立つことを示せ。
- (4) b_n を求めよ。 [2010]

- (1) $p_2(0)$, $p_2(1)$, $p_2(2)$ を求めよ。
- (2) $p_{n+1}(1)$ を, $p_n(1)$ と $p_n(7)$ を用いて表せ。
- (3) $p_n(1) + p_n(3) + p_n(7) + p_n(9)$ を求めよ。 [2009]

16 袋 A の中に赤玉と白玉がそれぞれ 2 つ入っていることと,袋 B の中に赤玉 3 つと白玉 2 つが入っていることが分かっている。

- (1) 袋 B から 2 つの玉を取り出すとき、取り出される赤玉の個数の期待値を求めよ。
- (2) 袋 A から 1 つの玉を取り出し、そのあと袋 B から 2 つの玉を取り出す。その 3 つの玉のうち赤玉が 2 つである確率を求めよ。
- (3) 袋 A から 1 つの玉を取り出したあとで、2 つの玉を袋 A から取り出すかあるいは 2 つの玉を袋 B から取り出すかのどちらかを選択できるとする。できるだけ多くの 赤玉を取り出そうと選択したとき、最終的に取り出される赤玉の個数の期待値を求めよ。 [2008]

17 袋の中に赤と白の玉が 1 個ずつ入っている。「この袋から玉を 1 個取り出して戻し、出た玉と同じ色の玉を袋の中に 1 個追加する」という操作を N 回繰り返した後、赤の玉が袋の中に m 個ある確率を $p_N(m)$ とする。

- (1) $p_3(m)$ を求めよ。
- (2) 一般のNに対し $p_N(m)$ を求めよ。

[2007]

18 正六面体の各面に 1 つずつ,サイコロのように,1 から 6 までの整数がもれなく書かれていて,向かい合う面の数の和は 7 である。このような正六面体が底面の数字が 1 であるように机の上におかれている。この状態から始めて,次の試行を繰り返し行う。「現在の底面と隣り合う 4 面のうちの 1 つを新しい底面にする」。ただし,これらの 4 面の数字が a_1 , a_2 , a_3 , a_4 のとき,それぞれの面が新しい底面となる確率の比は a_1 : a_2 : a_3 : a_4 とする。この試行を n 回繰り返した後,底面の数字が m である確率を $p_n(m)$ ($n \ge 1$) で表す。 $q_n = p_n(1) + p_n(6)$ ($n = 1, 2, 3, \cdots$) とおく。

- (1) q_1 , q_2 を求めよ。
- (2) $q_n \, \epsilon \, q_{n-1} \,$ で表し、 $q_n \, \epsilon \,$ 求めよ。
- (3) $p_n(1)$ を求めよ。 [2006]

19 1 から 13 までの数が 1 つ書かれているカードが 52 枚あり、各数について 4 枚 ずつある。この 52 枚のカードから、戻さずに続けて 2 枚とりだし、そのカードに書かれた数を順に x, y とする。関数 $f(x, y) = \log_3(x+y) - \log_3 x - \log_3 y + 1$ を考える。

(1) カードに書かれた数x,yで、f(x,y)=0となるものをすべて求めよ。

(2)
$$f(x, y) = 0$$
 となる確率を求めよ。 [2005]

20 サイコロの出た目の数だけ数直線を正の方向に移動するゲームを考える。ただし、8 をゴールとしてちょうど 8 の位置へ移動したときにゲームを終了し、8 をこえた分についてはその数だけ戻る。たとえば、7 の位置で 3 が出た場合、8 から 2 戻って 6 へ移動する。なお、サイコロは 1 から 6 までの目が等確率で出るものとする。原点から始めて、サイコロを n 回投げ終えたときに 8 へ移動してゲームを終了する確率を p_n とおく。

- (1) p₂を求めよ。
- (2) p₃を求めよ。
- (3) p_4 を求めよ。 [2004]

21 1 つの箱の中に 1 から 10 までの数が書かれたカードが 4 枚ずつ計 40 枚入っている。この箱から k 枚($3 \le k \le 12$)のカードを同時に取り出す。このうちの 3 枚のカードが同じ数で残りはこれとは違う互いに異なる数となる確率を p(k) とする。

- (1) p(k)を求めよ。
- (2) $4 \le k \le 12$ のとき、 $f(k) = \frac{p(k-1)}{p(k)}$ を求めよ。
- (3) p(k)を最大にする k の値を求めよ。 [2003]

名古屋大学・文系 分野別問題 (2000-2024)

22 サイレンを断続的に鳴らして 16 秒の信号を作る。ただし、サイレンは 1 秒または 2 秒鳴り続けて 1 秒休み、これをくり返す。また、信号はサイレンの音で始まり、サイレンの音で終わるものとする。

- (1) 1 秒または 2 秒鳴り続ける回数をそれぞれ m 回, n 回とするとき, m, n の満たす 関係式を求めよ。
- (2) 信号は何通りできるか。

[2001]

1 n を自然数とするとき、3 つの数 $a = \sqrt[5]{1 + \frac{1}{n}} - 1$ 、 $b = 1 - \sqrt[5]{1 - \frac{1}{n}}$ 、 $c = \frac{1}{5n}$ の大き さを比較せよ。 [2002]

数学公式集

この公式集は問題と無関係に作成されたものであるが, 答案作成にあたって利用 してよい。この公式集は持ち帰ってよい。

(不等式)

1.
$$\frac{a+b}{2} \ge \sqrt{ab}$$
, $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$ (a, b, c) は正または 0)

2.
$$(a^2+b^2+c^2)(x^2+y^2+z^2) \ge (ax+by+cz)^2$$
 (三角形)

3.
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

4.
$$a^2 = b^2 + c^2 - 2bc \cos A$$

5.
$$S = \frac{1}{2}bc\sin A = \sqrt{s(s-a)(s-b)(s-c)} \quad (s = \frac{1}{2}(a+b+c))$$

(図形と式)

6. 数直線上の
$$2$$
点 x_1 , x_2 を m : n に内分する点,および外分する点:
$$\frac{mx_2+nx_1}{m+n}$$
,
$$\frac{mx_2-nx_1}{m-n}$$

7. 点
$$(x_1, y_1)$$
と直線 $ax + by + c = 0$ との距離、および点 (x_1, y_1, z_1) と平面
$$ax + by + cz + d = 0$$
 との距離:
$$\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}, \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

8. だ円
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
上の点 (x_1, y_1) における接線: $\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1$

9. 双曲線
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
上の点 (x_1, y_1) における接線: $\frac{x_1x}{a^2} - \frac{y_1y}{b^2} = 1$ (ベクトル)

10.
$$2$$
 つのベクトルのなす角: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

(複素数)

11. 極形式表示:
$$z = r(\cos\theta + i\sin\theta)$$
 $(r = |z|, \theta = \arg z)$

12.
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
, $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ に対し, $z_1 z_2 = r_1 r_2 \{\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\}$

13. ド・モアブルの公式:
$$z = r(\cos\theta + i\sin\theta)$$
 に対し、 $z^n = r^n(\cos n\theta + i\sin n\theta)$ (解と係数の関係)

14.
$$x^2 + px + q = 0$$
 の解が α , β のとき, $\alpha + \beta = -p$, $\alpha\beta = q$

名古屋大学・文系 分野別問題 (2000-2024)

15.
$$x^3 + px^2 + qx + r = 0$$
 の解が α , β , γ のとき,
$$\alpha + \beta + \gamma = -p, \quad \alpha\beta + \beta\gamma + \gamma\alpha = q, \quad \alpha\beta\gamma = -r$$
 (対 数)

16.
$$\log_a M = \frac{\log_b M}{\log_b a}$$

(三角関数)

17.
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
, $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

18.
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

19.
$$\cos 2\alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

20.
$$\sin \alpha \cos \beta = \frac{1}{2} \{ \sin(\alpha + \beta) + \sin(\alpha - \beta) \}$$
$$\cos \alpha \sin \beta = \frac{1}{2} \{ \sin(\alpha + \beta) - \sin(\alpha - \beta) \}$$
$$\cos \alpha \cos \beta = \frac{1}{2} \{ \cos(\alpha + \beta) + \cos(\alpha - \beta) \}$$
$$\sin \alpha \sin \beta = -\frac{1}{2} \{ \cos(\alpha + \beta) - \cos(\alpha - \beta) \}$$

$$21. \quad \sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}, \quad \sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}, \quad \cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$$

22.
$$a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}\sin(\theta + \alpha)$$
 $\left(\sin\alpha = \frac{b}{\sqrt{a^2 + b^2}}, \cos\alpha = \frac{a}{\sqrt{a^2 + b^2}}\right)$ (数 列)

23. 初項 a, 公差 d, 項数 n の等差数列の和: $S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a+(n-1)d\} \ (l=a+(n-1)d)$

24. 初項
$$a$$
, 公比 r , 項数 n の等比数列の和 : $S_n = \frac{a(1-r^n)}{1-r}$ $(r \neq 1)$

25.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

 $1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{1}{2}n(n+1)\right\}^2$

(極 限)

26.
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e = 2.71828 \cdots$$

$$27. \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(微積分)

28.
$$\{f(g(x))\}' = f'(g(x))g'(x)$$

29.
$$x = f(y) \oslash \geq \stackrel{?}{=} \frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$$

30.
$$x = x(t)$$
, $y = y(t) \oslash$ \ge $\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$

31.
$$(\tan x)' = \frac{1}{\cos^2 x}$$
, $(\log x)' = \frac{1}{x}$

32.
$$x = g(t) \cap \xi \stackrel{*}{=} \int f(g(t))g'(t)dt = \int f(x)dx$$

33.
$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

34.
$$\int \frac{f'(x)}{f(x)} dx = \log |f(x)| + C$$

$$35. \quad \int \log x \, dx = x \log x - x + C$$

36.
$$\int_0^a \sqrt{a^2 - x^2} \, dx = \frac{1}{4} \pi a^2 \quad (a > 0), \quad \int_0^a \frac{dx}{x^2 + a^2} = \frac{\pi}{4a} \quad (a \neq 0)$$
$$\int_a^\beta (x - \alpha)(x - \beta) \, dx = -\frac{1}{6} (\beta - \alpha)^3$$

37. 回転体の体積:
$$V = \pi \int_a^b \{f(x)\}^2 dx$$

38. 曲線の長さ:
$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
 $(x = x(t), y = y(t), a = x(\alpha), b = x(\beta))$

(順列・組合せ)

39.
$${}_{n}C_{r} = {}_{n-1}C_{r} + {}_{n-1}C_{r-1} \quad (1 \le r \le n-1)$$

40.
$$(a+b)^n = \sum_{r=0}^n {}_n C_r a^{n-r} b^r$$

(確 率)

41. 確率
$$p$$
の事象が n 回の試行中 r 回起こる確率: $P_n(r) = {}_n\mathbf{C}_r\,p^rq^{n-r}$ $(q=1-p)$

42. 期待値:
$$E(X) = \sum_{i=1}^{n} x_i p_i$$

ただし p_i は確率変数Xが値 x_i をとる確率で、 $\sum_{i=1}^n p_i = 1$ を満たすとする。

分野別問題と解答例

関 数/微分と積分/図形と式

図形と計量/ベクトル

整数と数列/確 率/論 証

名古屋大学・文系 関数 (2000-2024)

問題

次の問いに答えよ。

- (1) 方程式 $x^3 3x^2 50 = 0$ の実数解をすべて求めよ。
- (2) 実数 p, q が p+q=pq を満たすとする。 X=pq とおくとき, p^3+q^3 を X で表せ。
- (3) 条件 $p^3+q^3=50$, $\frac{1}{p}+\frac{1}{q}=1$, p < q を満たす 0 でない実数の組(p, q) をすべて求めよ。 [2024]

解答例+映像解説

- (1) 方程式 $x^3 3x^{\frac{3}{2}} 50 = 0$ に対して, $(x-5)(x^2 + 2x + 10) = 0$ ここで, $x^2 + 2x + 10 = (x+1)^2 + 9 > 0$ より,実数解はx = 5だけである。
- (2) $X = p + q = pq \mathcal{O} \succeq \stackrel{*}{\geq},$ $p^3 + q^3 = (p+q)^3 - 3pq(p+q) = X^3 - 3X^2 \cdots \odot$

(3)
$$p^3+q^3=50$$
 ……②、 $\frac{1}{p}+\frac{1}{q}=1$ ……③に対して、③から、 $p+q=pq$ そこで、 $X=p+q=pq$ とおくと、①②から、 $X^3-3X^2=50$ すると、(1)の結果から $X=5$ となり、 $p+q=pq=5$ よって、 0 でない実数 p,q $(p は、 2 次方程式 $t^2-5t+5=0$ の解となり、 $p=\frac{5-\sqrt{5}}{2}$ 、 $q=\frac{5+\sqrt{5}}{2}$$

コメント

方程式を解く問題ですが、誘導なしでもよい内容です。

4 つの実数を $\alpha=\log_23$, $\beta=\log_35$, $\gamma=\log_52$, $\delta=\frac{3}{2}$ とおく。以下の問いに答えよ。

- (1) $\alpha\beta\gamma = 1$ を示せ。
- (2) α , β , γ , δ を小さい順に並べよ。

(3)
$$p = \alpha + \beta + \gamma$$
, $q = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ とし, $f(x) = x^3 + px^2 + qx + 1$ とする。このとき $f\left(-\frac{1}{2}\right)$, $f(-1)$ および $f\left(-\frac{3}{2}\right)$ の正負を判定せよ。 [2021]

解答例+映像解説

(1)
$$\alpha = \log_2 3$$
, $\beta = \log_3 5$, $\gamma = \log_5 2$ $\mathcal{O} \succeq \stackrel{?}{=}$, $\alpha\beta\gamma = \log_2 3 \cdot \frac{\log_2 5}{\log_2 3} \cdot \frac{1}{\log_2 5} = 1$

(2) まず、
$$\alpha = \log_2 3 > \log_2 2 = 1$$
、 $\beta = \log_3 5 > \log_3 3 = 1$ であり、 $0 = \log_5 1 < \log_5 2 < \log_5 5 = 1$ 、 $0 < \gamma < 1$ また、 $\alpha - \delta = \log_2 3 - \frac{3}{2} = \frac{1}{2}(2\log_2 3 - 3) = \frac{1}{2}(\log_2 9 - \log_2 8) > 0$
$$\beta - \delta = \log_3 5 - \frac{3}{2} = \frac{1}{2}(2\log_3 5 - 3) = \frac{1}{2}(\log_3 25 - \log_3 27) < 0$$
 これより、 $\alpha > \delta$ 、 $1 < \beta < \delta$ となり、 $\gamma < \beta < \delta < \alpha$ である。

(3)
$$p = \alpha + \beta + \gamma$$
, $q = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ のとき、(1)より $\alpha\beta\gamma = 1$ なので、
$$q = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} = \alpha\beta + \beta\gamma + \gamma\alpha$$
 すると、 $f(x) = x^3 + px^2 + qx + 1$ に対して、

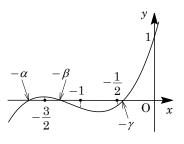
$$f(x) = x^3 + (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x + \alpha\beta\gamma$$
$$= (x + \alpha)(x + \beta)(x + \gamma)$$

これより、
$$y = f(x)$$
のグラフと x 軸との交点は $x = -\alpha$, $-\beta$, $-\gamma$ となる。
さて、 (2) より $0 < \gamma < 1 < \beta < \frac{3}{2} < \alpha$ なので、 $-\alpha < -\frac{3}{2} < -\beta < -1 < -\gamma < 0$

また、
$$\gamma - \frac{1}{2} = \frac{1}{2}(2\log_5 2 - 1) = \frac{1}{2}(\log_5 4 - \log_5 5) < 0$$
 から、 $0 < \gamma < \frac{1}{2}$ となり、

 $-\alpha<-\frac{3}{2}<-\beta<-1<-\frac{1}{2}<-\gamma<0$ したがって、右図より、

$$f\left(-\frac{1}{2}\right) < 0$$
, $f(-1) < 0$, $f\left(-\frac{3}{2}\right) > 0$



コメント

対数計算と高次方程式が融合した丁寧な誘導のついた問題です。

次の問いに答えよ。

- (1) $(\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}})^2$ を計算し、2 重根号を用いない形で表せ。
- (2) $\alpha = \sqrt{13} + \sqrt{9 + 2\sqrt{17}} + \sqrt{9 2\sqrt{17}}$ とするとき、整数係数の 4 次多項式 f(x) で $f(\alpha) = 0$ となるもののうち、 x^4 の係数が 1 であるものを求めよ。
- (3) 8 つの実数 $\pm\sqrt{13}\pm\sqrt{9+2\sqrt{17}}\pm\sqrt{9-2\sqrt{17}}$ (ただし、複号 \pm はすべての可能性 にわたる) の中で、(2)で求めた f(x)に対して方程式 f(x)=0 の解となるものをすべて求めよ。 [2015]

解答例

(1)
$$(\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}})^2=9+2\sqrt{17}+9-2\sqrt{17}+2\sqrt{9^2-2^2\cdot 17}=18+2\sqrt{13}$$

(2)
$$\alpha - \sqrt{13} = \sqrt{9 + 2\sqrt{17}} + \sqrt{9 - 2\sqrt{17}}$$
 より、両辺を 2 乗すると、(1)から、 $\alpha^2 - 2\sqrt{13}\alpha + 13 = 18 + 2\sqrt{13}$ 、 $\alpha^2 - 5 = 2\sqrt{13}(\alpha + 1)$ さらに、両辺を 2 乗すると、 $\alpha^4 - 10\alpha^2 + 25 = 52(\alpha^2 + 2\alpha + 1)$ となり、 $\alpha^4 - 62\alpha^2 - 104\alpha - 27 = 0$

よって、 α は 4 次方程式 $x^4 - 62x^2 - 104x - 27 = 0$ の解である。

(3) (2)
$$\sharp \vartheta$$
, $f(x) = x^4 - 62x^2 - 104x - 27$ $\circlearrowleft \vartheta$,

$$f(x) = (x^2 - 5)^2 - \{2\sqrt{13}(x+1)\}^2$$

= $\{x^2 - 5 - 2\sqrt{13}(x+1)\}\{x^2 - 5 + 2\sqrt{13}(x+1)\}$

zz, f(x) = 0 z z z,

$$x^{2}-5-2\sqrt{13}(x+1)=0\cdots$$
, $x^{2}-5+2\sqrt{13}(x+1)=0\cdots$

② より,
$$x^2 + 2\sqrt{13}x + 2\sqrt{13} - 5 = 0$$
 となり, $x = -\sqrt{13} \pm \sqrt{18 - 2\sqrt{13}} = -\sqrt{13} \pm (\sqrt{9 + 2\sqrt{17}} - \sqrt{9 - 2\sqrt{17}})$

以上より, 方程式 f(x) = 0 の解は,

$$\sqrt{13} + \sqrt{9 + 2\sqrt{17}} + \sqrt{9 - 2\sqrt{17}} , \sqrt{13} - \sqrt{9 + 2\sqrt{17}} - \sqrt{9 - 2\sqrt{17}} - \sqrt{13} + \sqrt{9 + 2\sqrt{17}} - \sqrt{9 - 2\sqrt{17}} , -\sqrt{13} - \sqrt{9 + 2\sqrt{17}} + \sqrt{9 - 2\sqrt{17}}$$

コメント

高次方程式の問題です。(2)はよくみかけるものですが、そのプロセスを誘導として (3)に適用させるところが、問題のねらいになっています。

p を実数とする。方程式 $x^4+(8-2p)x^2+p=0$ が相異なる 4 個の実数解をもち、 これらの解を小さい順に並べたとき、それらは等差数列をなすとする。この p を求め よ。 [2007]

解答例

方程式
$$x^4 + (8-2p)x^2 + p = 0$$
 ……①に対し、 $x^2 = t$ とおくと、
$$t^2 + (8-2p)t + p = 0$$
 ……②

①が相異なる 4 個の実数解をもつ条件は、②が異なる 2 つの正の解をもつことに対応する。この解を $t = \alpha$ 、 β ($\alpha < \beta$) とおくと、

$$D/4 = (4-p)^2 - p > 0 \cdots 3$$

 $\alpha + \beta = -(8-2p) > 0 \cdots 4, \ \alpha\beta = p > 0 \cdots 5$

③より,
$$p^2 - 9p + 16 > 0$$
 となり, $p < \frac{9 - \sqrt{17}}{2}$, $\frac{9 + \sqrt{17}}{2} < p$

④より
$$p>4$$
となり、③④⑤をまとめると、 $p>\frac{9+\sqrt{17}}{2}$ ……⑥

このとき、①の解は、 $\pm\sqrt{\alpha}$ 、 $\pm\sqrt{\beta}$ となり、 $-\sqrt{\beta}$ 、 $-\sqrt{\alpha}$ 、 $\sqrt{\alpha}$ 、 $\sqrt{\beta}$ が等差数列をなすことより、

$$\sqrt{\beta} - \sqrt{\alpha} = 2\sqrt{\alpha}$$
, $\sqrt{\beta} = 3\sqrt{\alpha}$

よって、 $\beta = 9\alpha$ となり、45から、

$$\alpha + 9\alpha = -(8-2p) \cdots ?$$
, $\alpha \cdot 9\alpha = p \cdots ?$

⑦⑧より,
$$10\alpha = -8 + 18\alpha^2$$
, $9\alpha^2 - 5\alpha - 4 = 0$, $(9\alpha + 4)(\alpha - 1) = 0$ $\alpha > 0$ より $\alpha = 1$ となり、⑧から $\alpha = 9$ である。

なお、この値は⑥を満たしている。

コメント

複 2 次方程式の解の条件についての問題です。なお、⑦8から α を消去して p の 2 次方程式をつくると、因数分解に時間がかかってしまいます。

- (1) 複素数 z を未知数とする方程式 $z^6 = 64$ の解をすべて求めよ。
- (2) (1)で求めた解z = p + qi (p, q は実数) のうち、次の条件を満たすものをすべて求めよ。

条件: x を未知数とする 3 次方程式 $x^3 + \sqrt{3}qx + q^2 - p = 0$ が、整数の解を少なく とも 1 つもつ。 [2005]

解答例

- (1) $z^6 = 64 \, \text{L} \, \text{9}, \ z^6 8^2 = 0 \, \text{Poly},$ $(z^3 - 8)(z^3 + 8) = 0, \ (z - 2)(z + 2)(z^2 + 2z + 4)(z^2 - 2z + 4) = 0$ $\text{Loc}, \ z = \pm 2, \ -1 \pm \sqrt{3}i, \ 1 \pm \sqrt{3}i$
- (2) (i) $z = \pm 2$ のとき 複号同順で、 $x^3 \mp 2 = 0$ となり、整数解は存在しない。
 - (ii) $z = -1 + \sqrt{3}i$ のとき $x^3 + 3x + 4 = 0$, $(x+1)(x^2 x + 4) = 0$ よって、整数解 x = -1 をもつ。
 - (iii) $z = -1 \sqrt{3}i \mathcal{O} \succeq \overset{*}{\geq}$ $x^3 - 3x + 4 = 0$, $x(3 - x^2) = 4 \cdots \cdots (1)$

これより、①が整数解をもつならば 4 の約数となり、整数解として $x = \pm 1$ 、 ± 2 、 ± 4 の場合を調べればよい。ここで、 $f(x) = x^3 - 3x + 4$ とおくと、

$$f(1)=2$$
, $f(-1)=6$, $f(2)=6$, $f(-2)=2$, $f(4)=56$, $f(-4)=-48$
よって, $f(x)=0$ は整数解をもたない。

(iv) $z = 1 + \sqrt{3}i \mathcal{O} \ge 3$ $x^3 + 3x + 2 = 0$, $x(-3 - x^2) = 2 \cdots 2$

これより、②が整数解をもつならば 2 の約数となり、整数解として $x = \pm 1$ 、 ± 2 の 場合を調べればよい。ここで、 $q(x) = x^3 + 3x + 2$ とおくと、

$$g(1)=6$$
, $g(-1)=-2$, $g(2)=16$, $g(-2)=-12$
よって, $g(x)=0$ は整数解をもたない。

(v) $z=1-\sqrt{3}i$ のとき $x^3-3x+2=0$, $(x-1)^2(x+2)=0$ よって、整数解 x=1, -2 をもつ。

(i) \sim (v)より、求めるzは、 $z = -1 + \sqrt{3}i$ 、 $1 - \sqrt{3}i$

コメント

すべての場合をチェックするのは面倒です。しかし、時間の問題にすぎません。

関数 f(x) = -|2x-1|+1 (0 $\leq x \leq 1$) を用いて、関数 g(x) = -|2f(x)-1|+1 (0 $\leq x \leq 1$) を考える。0 < c < 1 のとき、g(x) = c を満たすx を求めよ。 [2001]

解答例

$$f(x) = -|2x-1|+1 (0 \le x \le 1)$$
 \emptyset δ ,

•
$$0 \le x \le \frac{1}{2}$$
 $\emptyset \ge 3$ $f(x) = (2x-1)+1=2x$

・
$$\frac{1}{2} \le x \le 1$$
 のとき $f(x) = -(2x-1) + 1 = -2x + 2$ よって、 $y = f(x)$ を図示すると、右図のようになる。
次に、 $g(x) = -|2f(x) - 1| + 1$ (0 $\le x \le 1$) に対して、

•
$$0 \le x \le \frac{1}{4}$$
 $\emptyset \succeq \stackrel{\stackrel{*}{\Rightarrow}}{=} f(x) \le \frac{1}{2} \curlywedge \emptyset$,

$$g(x) = 2f(x) = 2 \cdot 2x = 4x$$

・
$$\frac{1}{4} \le x \le \frac{1}{2}$$
 のとき $f(x) \ge \frac{1}{2}$ より,
 $g(x) = -2f(x) + 2 = -2 \cdot 2x + 2 = -4x + 2$

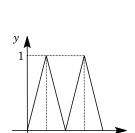
・
$$\frac{1}{2} \le x \le \frac{3}{4}$$
 のとき $f(x) \ge \frac{1}{2}$ より,
$$g(x) = -2f(x) + 2 = -2(-2x + 2) + 2 = 4x - 2$$

$$g(x) = 2f(x) = 2(-2x+2) = -4x+4$$

以上より, y = g(x)を図示すると, 右図のようになる。

すると、0 < c < 1 のとき g(x) = c の解は、4x = c、-4x + 2 = c、4x - 2 = c、-4x + 4 = cより、

$$x = \frac{c}{4}, -\frac{c-2}{4}, \frac{c+2}{4}, -\frac{c-4}{4}$$



コメント

合成関数についての頻出問題です。内容的には数Ⅲなのですが。

a を 実 数 と し , 2 つ の 関 数 $f(x) = x^3 - (a+2)x^2 + (a-2)x + 2a + 1$ と $g(x) = -x^2 + 1$ を考える。

- (1) f(x)-g(x) を因数分解せよ。
- (2) y = f(x)と y = g(x) のグラフの共有点が 2 個であるような a を求めよ。
- (3) a は(2)の条件を満たし、さらに f(x)の極大値は 1 よりも大きいとする。 y = f(x)と y = g(x)のグラフを同じ座標平面に図示せよ。 [2023]

解答例+映像解説

- (1) $f(x) = x^3 (a+2)x^2 + (a-2)x + 2a + 1$, $g(x) = -x^2 + 1$ に対して, $f(x) - g(x) = x^3 - (a+1)x^2 + (a-2)x + 2a = (x+1)\{x^2 - (a+2)x + 2a\}$ = (x+1)(x-2)(x-a)
- (2) y = f(x) と y = g(x) のグラフの共有点の x 座標は、 f(x) g(x) = 0 より、 x = -1, 2、 a

すると、共有点が2個の条件は、a=-1またはa=2である。

(3) (i) $a = -1 \mathcal{O}$ ≥ 3

$$f(x) = x^3 - x^2 - 3x - 1$$
, $f(x) - g(x) = (x+1)^2(x-2)$

ここで、 $f'(x) = 3x^2 - 2x - 3$ から、f'(x) = 0の解を $x = \alpha$ 、 $\beta(\alpha < \beta)$ とおくと、

さて、-1 < x < 2において、f(x) - g(x) < 0 すなわち f(x) < g(x) である。 すると、 $-1 < \alpha < 2$ なので $f(\alpha) < g(\alpha) \le g(0) = 1$ となり、条件に反する。

(ii) $a = 2 \mathcal{O} \mathcal{E} \mathcal{E}$

$$f(x) = x^3 - 4x^2 + 5$$
, $f(x) - g(x) = (x+1)(x-2)^2$

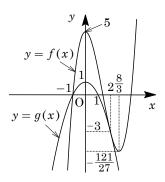
ら, f'(x) = 0の解はx = 0, $\frac{8}{3}$ となる。

これより、f(x)の増減は右表のようになり、極大値はf(0)=5で、条件を満たす。

x	•••	0	•••	$\frac{8}{3}$	
f'(x)	+	0	ı	0	+
f(x)	7	5	\	$-\frac{121}{27}$	7

(i)(ii) $\sharp b$, a = 2, $f(x) = x^3 - 4x^2 + 5$ $\Leftrightarrow 5$

以上より、y=f(x)とy=g(x)のグラフは、x=-1で交わり、x=2で接することに注意すると、右図のようになる。



コメント

微分と増減に関する標準的な問題です。(3)の(i)の場合の極大値は次数下げの方法で求まりますが、ここは「1 よりも大きい」という表現に着目をし、グラフをもとに考えました。

a, b を実数とする。

- (1) 整式 x^3 を2次式 $(x-a)^2$ で割ったときの余りを求めよ。
- (2) 実数を係数とする 2 次式 $f(x) = x^2 + \alpha x + \beta$ で整式 x^3 を割ったときの余りが 3x + b とする。b の値に応じて、このような f(x) が何個あるかを求めよ。 [2022]

解答例+映像解説

- (1) $x^3 & x^3 & (x-a)^2 = x^2 2ax + a^2$ で割ると、 $x^3 = (x^2 2ax + a^2)(x+2a) + 3a^2x 2a^3$ これより、求める余りは $3a^2x 2a^3$ である。
- (2) $x^3 & f(x) = x^2 + \alpha x + \beta$ で割ると,

$$x^{3} = (x^{2} + \alpha x + \beta)(x - \alpha) + (\alpha^{2} - \beta)x + \alpha\beta$$

余りが3x+bより、 $\alpha^2-\beta=3$ 、 $\alpha\beta=b$ となり、 $b=\alpha(\alpha^2-3)$ ……(*) すると、1 つの α の値に対して β の値が 1 つ決まるので、b の値に応じて決まる

そこで、 $g(\alpha) = \alpha(\alpha^2 - 3) = \alpha^3 - 3\alpha$ とおくと、

f(x)の個数は, (*)を満たす α の個数が対応する。

 $g'(\alpha) = 3\alpha^2 - 3 = 3(\alpha + 1)(\alpha - 1)$ これより、 $g(\alpha)$ の増減は右表のように なるので、(*)を満たす α の個数、すなわち

α		-1	•••	1	•••
$g'(\alpha)$	+	0		0	+
$g(\alpha)$	7	2		-2	7

-2 < b < 2 のとき 3 個, $b = \pm 2$ のとき 2 個, b < -2, 2 < b のとき 1 個

コメント

f(x)の個数は、

微分法の方程式への応用問題です。 f(x)の個数と, (*)を満たす α の個数の対応関係がポイントです。