解答解説のページへ

a を実数とし、座標空間内の 3 点 P(-1, 1, -1)、Q(1, 1, 1)、R(a, a^2 , a^3)を考える。以下の問いに答えよ。

- (1) $a \neq -1$, $a \neq 1$ のとき、 $3 \land P$, Q, R は一直線上にないことを示せ。
- (2) a が-1<a<1の範囲を動くとき、三角形 PQR の面積の最大値を求めよ。

解答解説のページへ

整式 $f(z) = z^6 + z^4 + z^2 + 1$ について,以下の問いに答えよ。

- (1) f(z) = 0 をみたすすべての複素数 z に対して、|z| = 1 が成り立つことを示せ。
- (2) 次の条件をみたす複素数 w をすべて求めよ。

条件: f(z) = 0 をみたすすべての複素数 z に対して f(wz) = 0 が成り立つ。

解答解説のページへ

以下の問いに答えよ。

- (1) 自然数 a, b が a < b をみたすとき、 $\frac{b!}{a!} \ge b$ が成り立つことを示せ。
- (2) $2 \cdot a! = b!$ をみたす自然数の組(a, b) をすべて求めよ。
- (3) $a! + b! = 2 \cdot c!$ をみたす自然数の組(a, b, c)をすべて求めよ。

解答解説のページへ

n を 3 以上の整数とする。座標平面上の点のうち、x 座標と y 座標がともに 1 以上 n 以下の整数であるものを考える。これら n^2 個の点のうち 3 点以上を通る直線の個数 を L(n) とする。以下の問いに答えよ。

- (1) L(3)を求めよ。
- (2) L(4)を求めよ。
- (3) L(5)を求めよ。

解答解説のページへ

自然数 m, n に対して、 $I(m, n) = \int_1^e x^m e^x (\log x)^n dx$ とする。以下の問いに答え

ょ。

- (1) I(m+1, n+1) をI(m, n+1), I(m, n), m, n を用いて表せ。
- (2) すべての自然数 m に対して、 $\lim_{n\to\infty} I(m, n) = 0$ が成り立つことを示せ。

問題のページへ

(1)
$$3 点 P(-1, 1, -1), Q(1, 1, 1), R(a, a^2, a^3)$$
に対し、 $\overrightarrow{PQ} = 2(1, 0, 1)$ $\overrightarrow{PR} = (a+1, a^2-1, a^3+1) = (a+1)(1, a-1, a^2-a+1)$ ここで、 $3 点 P, Q, R$ は一直線上にあると仮定すると、 k を実数として、 $\overrightarrow{PR} = k\overrightarrow{PQ}$ 、 $(a+1)(1, a-1, a^2-a+1) = 2k(1, 0, 1)$ ……(*) ここで、(*)の y 成分を比べると、 $a \neq -1$ 、 $a \neq 1$ から $\overrightarrow{PR} = k\overrightarrow{PQ}$ は成立しない。 よって、 $3 点 P, Q, R$ は一直線上にない。

(2)
$$|\overrightarrow{PQ}| = 2\sqrt{1+1} = 2\sqrt{2}$$
, $|\overrightarrow{PR}| = (a+1)\sqrt{1+(a-1)^2+(a^2-a+1)^2}$ $\overrightarrow{PQ} \cdot \overrightarrow{PR} = 2(a+1)(1+a^2-a+1) = 2(a+1)(a^2-a+2)$ さて, $\triangle PQR$ の面積 S は、 $S = \frac{1}{2}\sqrt{|\overrightarrow{PQ}|^2|\overrightarrow{PR}|^2-(\overrightarrow{PQ} \cdot \overrightarrow{PR})^2}$ より、 $S = \frac{1}{2}\sqrt{8(a+1)^2\{1+(a-1)^2+(a^2-a+1)^2\}-4(a+1)^2(a^2-a+2)^2}$ $= \sqrt{(a+1)^2\{2+2(a-1)^2+2(a^2-a+1)^2-(a^2-a+2)^2\}}$ $= \sqrt{(a+1)^2(a^4-2a^3+3a^2-4a+2)} = \sqrt{(a+1)^2(a-1)^2(a^2+2)}$ $= \sqrt{(a^2-1)^2(a^2+2)}$ ここで、 $t = a^2-1$ とおくと、 $-1 < a < 1$ から $-1 \le t < 0$ となり、 $S = \sqrt{t^2(t+3)} = \sqrt{t^3+3t^2}$

さらに, $f(t) = t^3 + 3t^2$ とおくと, $f'(t) = 3t^2 + 6t = 3t(t+2)$

すると、 $-1 \le t < 0$ における f(t) の増減は右表のよ

うになり、f(t)の最大値はf(-1)=2である。

よって、 $S = \sqrt{f(t)}$ から、S はt = -1 (a = 0) のとき 最大値 $\sqrt{2}$ をとる。

t	-1	•••	0
f'(t)		1	0
f(t)	2	\	0

「解説]

空間ベクトルの応用についての頻出題です。解答例では公式処理をしましたが,や や計算が煩雑でした。

問題のページへ

(1)
$$f(z) = z^6 + z^4 + z^2 + 1$$
 に対して、 $f(z) = 0$ とすると、 $z^4(z^2 + 1) + z^2 + 1 = 0$ 、 $(z^2 + 1)(z^4 + 1) = 0$

・
$$z^2+1=0$$
 に対して、 $z^2=-1$ から $z=\pm i$ となり、
$$z=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2},\ z=\cos\frac{3}{2}\pi+i\sin\frac{3}{2}\pi$$

・
$$z^4+1=0$$
 に対して、 $z^4+2z^2+1-2z^2=0$ と変形すると、
$$(z^2+1)^2-(\sqrt{2}z)^2=0\,,\;\; (z^2-\sqrt{2}z+1)(z^2+\sqrt{2}z+1)=0$$
 これより、 $z=\frac{\sqrt{2}\pm\sqrt{2}i}{2}=\frac{\sqrt{2}}{2}(1\pm i)\,,\;\; z=\frac{-\sqrt{2}\pm\sqrt{2}i}{2}=\frac{\sqrt{2}}{2}(-1\pm i)$ となり、
$$z=\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\,,\;\; z=\cos\frac{3}{4}\pi+i\sin\frac{3}{4}\pi$$

$$z=\cos\frac{5}{4}\pi+i\sin\frac{5}{4}\pi\,,\;\; z=\cos\frac{7}{4}\pi+i\sin\frac{7}{4}\pi$$

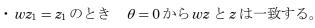
以上より、f(z) = 0のすべての解zについて、|z| = 1が成り立つ。

(2) f(z) = 0 をみたすすべての z に対し、f(wz) = 0 が成り立つとき、(1)より、|z| = 1、|wz| = 1

すると, |w||z|=1から|w|=1となり, $w=\cos\theta+i\sin\theta$ (0 \leq θ < 2π) とおくと,

複素数平面上で、点wz は点zを原点まわりに θ だけ回転した点である。

さて、f(z)=0の解を、右図のように、 $z=z_1$ 、 z_2 、 z_3 、 z_4 、 z_5 、 z_6 とおくと、点wzと点zが一致する条件は、 z_1 に着目すると、



・
$$wz_1 = z_2$$
のとき $\theta = \frac{\pi}{4}$ となり $f(wz_3) \neq 0$ である。

・
$$wz_1 = z_3$$
のとき $\theta = \frac{\pi}{2}$ となり $f(wz_2) \neq 0$ である。

・
$$wz_1 = z_4$$
 のとき $\theta = \pi$ から原点対称移動となり、 wz と z は一致する。 ・ $wz_1 = z_5$ のとき $\theta = \frac{5}{4}\pi$ となり $f(wz_3) \neq 0$ である。

・
$$wz_1 = z_6$$
のとき $\theta = \frac{3}{2}\pi$ となり $f(wz_2) \neq 0$ である。

したがって、点wzと点zが一致する条件は、 $\theta=0$ または $\theta=\pi$ となり、

$$w = \cos 0 + i \sin 0 = 1$$
, $w = \cos \pi + i \sin \pi = -1$

[解 説]

高次方程式の解と複素数平面についての問題です。(1)は複2次方程式を解きましたが、他の解法もあります。また、(2)は場合分けを行い、丁寧に記しました。

問題のページへ

- (1) 自然数 a, b が $1 \le a < b$ をみたすとき,
 - (i) b = a + 1 (a = b 1) \emptyset $b \stackrel{?}{=} a! = (b 1)!$ $b \stackrel{?}{=} \frac{b!}{a!} = \frac{b!}{(b 1)!} = b$
 - (ii) b > a+1 (a < b-1) のとき a! < (b-1)! から, $\frac{b!}{a!} > \frac{b!}{(b-1)!} = b$
 - (i)(ii)より、 $\frac{b!}{a!} \ge b \cdots$ ①が成り立つ。
- (2) 自然数 a, b が $2 \cdot a! = b! \cdots 2$ をみたすとき、a! < b! から a < b である。 すると、①から $2 = \frac{b!}{a!} \ge b$ となり、 $1 \le a < b$ から、a = 1、b = 2 である。 このとき、 $2 \cdot 1! = 2!$ が成り立ち、2 をみたす自然数 (a, b) は、(a, b) = (1, 2)
- (3) 自然数 a, b, c が $a! + b! = 2 \cdot c! \cdots \cdot \cdot \cdot \cdot \cdot$ 多をみたすとき、
 - (i) a = bのとき ③より $a! + a! = 2 \cdot c!$ となり、a! = c! から a = c したがって、k を自然数として、(a, b, c) = (k, k, k) である。
 - (ii) a < b のとき a! < b! となり、 $2 \cdot a! < a! + b! < 2 \cdot b!$ ③から $2 \cdot a! < 2 \cdot c! < 2 \cdot b!$ となり、a! < c! < b! から $1 \le a < c < b$ である。 さて、③より $2 = \frac{a!}{c!} + \frac{b!}{c!}$ となり、①から $\frac{b!}{c!} \ge b$ なので、

$$2 = \frac{a!}{c!} + \frac{b!}{c!} \ge \frac{a!}{c!} + b > b$$

すると, b < 2 となるが, これは $1 \le a < c < b$ をみたさない。

- (iii) a > b のとき (ii)と同様にすると、 $1 \le b < c < a$ 、 $2 = \frac{a!}{c!} + \frac{b!}{c!}$ である。 このとき、①から $\frac{a!}{c!} \ge a$ なので、 $2 = \frac{a!}{c!} + \frac{b!}{c!} \ge a + \frac{b!}{c!} > a$ すると、a < 2 となるが、これは $1 \le b < c < a$ をみたさない。
- (i) \sim (iii)より、③をみたす自然数(a, b, c)は、

$$(a, b, c) = (k, k, k) (k は自然数)$$

[解 説]

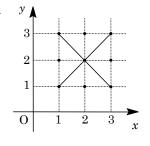
誘導つきの整数問題です。不等式①の使い方がポイントです。

問題のページへ

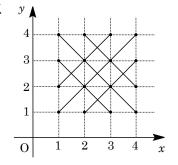
座標平面上の点のうち、x 座標と y 座標がともに 1 以上 n 以下の整数である n^2 個の格子点について、3 点以上の格子点を通る直線の個数を L(n) とする。

(1) n=3のとき、9個の格子点は右図の通りであり、3点以上の格子点を通る直線は、

- $\cdot y$ 軸に平行な直線 $x=1, 2, 3 \circ 3$ 本
- ・傾き正の直線 右図のように、傾き1が1本
- ・傾き負の直線 右図のように、傾き-1が1本以上より、L(3)=3+3+1+1=8



- (2) n=4 のとき、16 個の格子点は右図の通りであり、3 点以上の格子点を通る直線は、
 - $\cdot x$ 軸に平行な直線 $y=1, 2, 3, 4 \circ 4$ 本
 - y 軸に平行な直線 x=1, 2, 3, 4 で 4 本
 - ・傾き正の直線 右図のように、傾き1が3本
 - ・傾き負の直線 右図のように、傾き-1が3本以上より、L(4)=4+4+3+3=14



- (3) n=5のとき、25 個の格子点は右図の通りであり、3 点以上の格子点を通る直線は、
 - ・x軸に平行な直線 y=1, 2, 3, 4, 5 で 5 本
 - ・y軸に平行な直線 x=1, 2, 3, 4, 5で5本
 - ・傾き正の直線 右図において, 傾き $1, 2, \frac{1}{2}$ が, それぞれ 5 本, 3 本, 3 本 傾き $3, 4, \frac{1}{3}, \frac{1}{4}$ は, いずれも 0 本
- 0 1 2 3 本で、それ以外はない。

5

4

3

2

・傾き負の直線 傾き正の直線と同様に考えて、 傾き-1, -2, $-\frac{1}{2}$ が、それぞれ5本、3本、3本で、それ以外はない。

以上より, L(5) = 5 + 5 + (5 + 3 + 3) + (5 + 3 + 3) = 32

[解 説]

具体的なケースについて、場合の数を数える問題です。ただ、どこまで記述すれば よいのか迷いますが。

問題のページへ

(1)
$$m, n$$
 が自然数のとき、 $I(m, n) = \int_{1}^{e} x^{m} e^{x} (\log x)^{n} dx$ に対して、
$$I(m+1, n+1) = \int_{1}^{e} x^{m+1} e^{x} (\log x)^{n+1} dx$$
 ここで、 $\left(x^{m+1} (\log x)^{n+1}\right)' = (m+1)x^{m} (\log x)^{n+1} + x^{m+1} (n+1) (\log x)^{n} \cdot x^{-1}$ から、
$$I(m+1, n+1) = \left[x^{m+1} e^{x} (\log x)^{n+1}\right]_{1}^{e} - (m+1) \int_{1}^{e} x^{m} e^{x} (\log x)^{n+1} dx$$
$$- (n+1) \int_{1}^{e} x^{m} e^{x} (\log x)^{n} dx$$
$$= e^{m+e+1} - (m+1) I(m, n+1) - (n+1) I(m, n) \cdots \dots \dots \dots \dots \dots \dots$$

(2) ①を変形すると,

$$I(m, n) = \frac{1}{n+1} \{ e^{m+e+1} - (m+1)I(m, n+1) - I(m+1, n+1) \} \cdots \cdots ②$$
 さて、 $1 \le x \le e$ において、 $x^m e^x (\log x)^n \ge 0$ なので、

$$I(m, n) = \int_1^e x^m e^x (\log x)^n dx \ge 0$$

同様に, $I(m, n+1) \ge 0$, $I(m+1, n+1) \ge 0$ となり, ②から,

$$0 \le I(m, n) \le \frac{1}{n+1} e^{m+e+1}$$

すると、すべての自然数
$$m$$
 に対して、 $\lim_{n\to\infty}\frac{1}{n+1}e^{m+e+1}=0$ となるので、
$$\lim_{n\to\infty}I(m,\ n)=0$$

「解説]

(1)の部分積分は、問題文を参考にして、 e^x を積分する方、 $x^{m+1}(\log x)^{n+1}$ を微分する方に役割を分担しました。(2)は、①のI(m,n)の係数n+1に注目しています。