ょ。

解答例のページへ

半径 1 の円周 C 上の 2 点 A, B は $AB = \sqrt{3}$ をみたすとする。点 P が円周 C 上を動くとき, $AP^2 + BP^2$ の最大値を求めよ。

解答例のページへ

以下の問いに答えよ。

- (1) n を整数とするとき, n^2 を 8 で割った余りは 0, 1, 4 のいずれかであることを示せ。
- (2) $2^m = n^2 + 3$ をみたす 0 以上の整数の組(m, n) をすべて求めよ。

解答例のページへ

1 個のさいころを 3 回続けて投げ、出る目を順に a, b, c とする。整式 $f(x)=(x^2-ax+b)(x-c)$ について、以下の問いに答えよ。

- (1) f(x) = 0 をみたす実数 x の個数が 1 個である確率を求めよ。
- (2) f(x) = 0 をみたす自然数 x の個数が 3 個である確率を求めよ。

問題のページへ

1

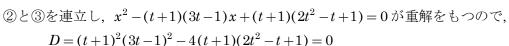
曲線
$$y = x^3 + x^2 - x - 1$$
 ……①に対して、
 $y = x^2(x+1) - (x+1) = (x+1)^2(x-1)$

ここで、曲線①と曲線 $y=x^2$ ……②の両方に接する直線について、曲線①上の接点を (t, t^3+t^2-t-1) とおくと、接線の方程式は、 $y'=3x^2+2x-1=(x+1)(3x-1)$ から、

$$y - (t^{3} + t^{2} - t - 1) = (3t^{2} + 2t - 1)(x - t)$$

$$y = (3t^{2} + 2t - 1)x - 2t^{3} - t^{2} - 1$$

$$= (t + 1)(3t - 1)x - (t + 1)(2t^{2} - t + 1) \cdots \cdots 3$$



まとめると、 $(t+1)(9t^3-5t^2-t-3)=0$ から $(t+1)(t-1)(9t^2+4t+3)=0$ $9t^2+4t+3=0$ は実数解をもたないので、t=-1またはt=1である。

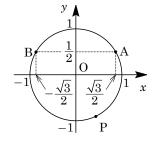
すると、曲線①と②の両方に接する直線は、③からy=0またはy=4x-4である。

[コメント]

2 曲線の共通接線についての基本題です。曲線の概形を調べると、y=0 がその 1 つであることがわかります。

問題のページへ

 $C: x^2 + y^2 = 1$ 上の 2 点 A, B が, $AB = \sqrt{3}$ をみたすとき, C 上の動点 P を $P(\cos\theta, \sin\theta)$ ($0 \le \theta < 2\pi$) とおくと, $A\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, $B\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ としても一般性を失わない。 $AP^2 = \left(\cos\theta - \frac{\sqrt{3}}{2}\right)^2 + \left(\sin\theta - \frac{1}{2}\right)^2$



$$\mathrm{BP}^2 = \left(\cos\theta + \frac{\sqrt{3}}{2}\right)^2 + \left(\sin\theta - \frac{1}{2}\right)^2$$

これより,
$$AP^2+BP^2=2\cos^2\theta+\frac{3}{2}+2\sin^2\theta-2\sin\theta+\frac{1}{2}=4-2\sin\theta$$
 となる。
したがって, AP^2+BP^2 は $\sin\theta=-1\left(\theta=\frac{3}{2}\pi\right)$ のとき最大値 $4+2=6$ をとる。

[コメント]

円を題材にした基本題です。計算が容易になるような設定が重要です。

問題のページへ

- (1) 整数n を 4 で割った余りで分類すると, k を整数として,
 - (i) $n = 4k \mathcal{O} \geq 3$ $n^2 = 16k^2 = 8 \cdot 2k^2$
 - (ii) n = 4k + 1 $\emptyset \ge 3$ $n^2 = 8(2k^2 + k) + 1$
 - (iii) $n = 4k + 2 \mathcal{O}$ ≥ 3 $n^2 = 8(2k^2 + 2k) + 4$
 - (iv) $n = 4k + 3 \mathcal{O}$ $\geq 8(2k^2 + 3k + 1) + 1$
 - (i) \sim (iv)より、 n^2 を8で割った余りは0,1,4のいずれかである。
- (2) 0 以上の整数 m, n に対して、 $2^m = n^2 + 3 \cdots (*)$

まず、(*)の右辺の n^2+3 を8で割った余りは、(1)から3,4,7のいずれかである。また、(*)の左辺の 2^m を8で割った余りは、m=0のとき1、m=1のとき2、m=2のとき4、 $m \ge 3$ のとき0である。

ここで、(*)が成り立つには、 2^m を 8 で割った余りと n^2+3 を 8 で割った余りが等しいことが必要である。すると、 n^2+3 と 2^m を 8 で割った余りがともに 4 のときになり、m=2 かつ $2^2=n^2+3$ のときである。

したがって, (*)をみたす(m, n)は, (m, n)=(2, 1)である。

[コメント]

余りで分類するタイプの整数問題です。(1)が(2)にストレートにつながります。

問題のページへ

さいころを 3 回投げて出る目が順に a, b, c のとき, $f(x) = (x^2 - ax + b)(x - c)$ に対して, f(x) = 0 を満たすx について,

- (1) f(x) = 0 をみたす実数 x の個数が 1 個であるのは、その実数は x = c であり、
 - (i) $x^2 ax + b = 0$ が虚数解をもつとき $D = a^2 4b < 0$ から $a^2 < 4b \le 24$ となり、 $1 \le a \le 4$ である。
 - ・a=1のとき 4b>1から, b=1, 2, 3, 4, 5, 6
 - ・a = 2のとき b > 1から, b = 2, 3, 4, 5, 6
 - $\cdot a = 3$ のとき 4b > 9から、b = 3, 4, 5, 6
 - ・a=4 のとき b>4 から、b=5、6 c は 6 通りずつより、(a, b, c) は $(6+5+4+2)\times 6=102$ 通りの場合がある。
 - (ii) $x^2 ax + b = 0$ が重解 x = c をもつとき $D = a^2 4b = 0$ から $a^2 = 4b$ $(a = 2\sqrt{b})$ となり、(a, b) = (2, 1)、(4, 4) である。
 - (a, b) = (2, 1) のとき $x^2 2x + 1 = 0$ より重解はx = 1 となり, c = 1
 - ・(a, b) = (4, 4) のとき $x^2 4x + 4 = 0$ より重解はx = 2 となり、c = 2 これより、(a, b, c) は 2 通りの場合がある。
 - (i)(ii)より、求める確率は $\frac{102+2}{6^3} = \frac{13}{27}$ である。
- (2) f(x) = 0 をみたす自然数 x の個数が 3 個であるのは, $x^2 ax + b = 0$ の異なる自然数解について,l を自然数として $D = a^2 4b = l^2$ ($a^2 = 4b + l^2$) が必要である。 このとき,解は $x = \frac{a \pm l}{2}$ となり, $l^2 \le 36 4 = 32$ から $1 \le l \le 5$ であるので,
 - ・ l=1 のとき $a^2=4b+1$ から、(a, b)=(3, 2)、(5, 6) (a, b)=(3, 2) のとき $x=\frac{3\pm 1}{2}$ から、c は $c\neq 1$ 、2 の 4 通りで、(a, b)=(5, 6)
 - のとき $x = \frac{5\pm 1}{2}$ から、cは $c \neq 2$ 、3の4通りとなる。
 - ・ l=2 のとき $a^2=4b+4=4(b+1)$ から、(a, b)=(4, 3) このとき $x=\frac{4\pm 2}{2}$ となり、c は $c \ne 1$,3 の 4 通りとなる。
 - ・l=3のとき $a^2=4b+9$ から、 $(a,\ b)=(5,\ 4)$ このとき $x=\frac{5\pm 3}{2}$ となり、c は $c\neq 1$ 、4 の 4 通りとなる。
 - ・l=4 のとき $a^2=4b+16=4(b+4)$ から、(a, b)=(6, 5) このとき $x=\frac{6\pm 4}{2}$ となり、c は $c \ne 1$ 、5 の 4 通りとなる。
 - ・l=5のとき $a^2=4b+25$ から、みたす(a,b)は存在しない

以上より、求める確率は $\frac{4\times5}{6^3} = \frac{5}{54}$ である。

[コメント]

丁寧に数え上げるタイプの確率問題です。何よりも注意力が要求されます。なお, (2)では, $x^2-ax+b=0$ に解と係数の関係を適用して,自然数解の値からアプローチ する方法もあります。