解答解説のページへ

座標空間において、3 点 A(1, 0, 0),B(0, -1, 0),C(0, 0, -2) の定める平面を α とし、方程式 $x^2+y^2+z^2+2x-10y+4z+21=0$ が表す球面を S とする。次の問いに答えよ。

- (1) 球面 S の中心 P の座標と S の半径を求めよ。
- (2) 実数 s, t に対して、点 D を $\overrightarrow{AD} = s\overrightarrow{AB} + t\overrightarrow{AC}$ を満たすようにとる。このとき、D の座標を s, t を用いて表せ。
- (3) 点 Q が平面 α 上を動き,点 R が球面 S 上を動くとき,Q と R の距離の最小値を求めよ。また、そのときの Q と R の座標をそれぞれ求めよ。

解答解説のページへ

n, k を自然数とする。n 個のボールと k 個の箱がある。各箱は箱 1, 箱 2, …, 箱 k のように表すものとする。n 個のボールを k 個の箱へ投げ入れる。各ボールはいずれかの箱に入るものとし、どの箱に入る確率も等しいとする。n 個のボールを投げ入れた後,箱 i (i=1, 2, ..., k) に入っているボールの個数を a_i とする。このとき、 $a_1+a_2+\cdots+a_k=n$ となる。次の問いに答えよ。

- (1) n=4, k=5 とする。このとき, $a_1=0$ となる確率を求めよ。
- (2) $k \ge 2$ とする。このとき、 $a_1 \times a_2 = 0$ となる確率を n, k を用いて表せ。
- (3) k=4とする。このとき, $a_1 \times a_2 \times a_3 \times a_4 \neq 0$ となる確率を p_n とする。 p_n の値をnを用いて表せ。
- (4) k=4 とし, p_n を (3) で求めたものとする。このとき,r>0 で数列 $\{r^n(p_{n+1}-p_n)\}$ が収束するようなrの値の範囲を求めよ。

解答解説のページへ

a を0 < a < 1 となる実数とする。座標平面上において,長さが 4 の線分 PQ を考える。線分 PQ の端点 P は x 軸上を,端点 Q は y 軸上を動くとき,線分 PQ を a : (1-a) の比に内分する点 R の軌跡は楕円になる。この楕円を C とする。ただし,円は楕円の特別な場合とする。次の問いに答えよ。

- (1) 楕円 C の方程式を a を用いて表せ。
- (2) 楕円 C で囲まれた部分と連立不等式 $x \ge 0$, $\sqrt{3}ax \ge (1-a)y$ の表す領域の共通部分の面積をSとする。S をa を用いて表せ。
- (3) 面積Sの最大値とそのときのaの値を求めよ。

4 解答解説のページへ

実数 t に対して、複素数 z を次の条件(I),(II)を満たすようにとる。

- (I) zの虚部は0以上である。 (II) $z^2-2t^3z+t^6+9t^2=0$ このzに対して,複素数wを $w=i\overline{z}$ とおく。ただし,iは虚数単位とし,zはzの共役複素数とする。次の問いに答えよ。
- (1) 複素数zとwをtを用いて表せ。
- (2) $0 \le t \le 2$ のとき、|z-w| の最大値を求めよ。また、そのときの t の値をすべて求めよ。
- (3) 実数 t を動かしたとき、複素数平面上で z が表す点が描く曲線を C_1 とし、w が表す点が描く曲線を C_2 とする。 C_1 と C_2 で囲まれる図形の面積を求めよ。

問題のページへ

(1) $S: x^2+y^2+z^2+2x-10y+4z+21=0$ に対して, $(x+1)^2+(y-5)^2+(z+2)^2=9$ これより、球面 S の中心は $P(-1,\ 5,\ -2)$ 、半径は $r=\sqrt{9}=3$ である。

(2)
$$\overrightarrow{AD} = s\overrightarrow{AB} + t\overrightarrow{AC} \not \supset 0$$
, $\overrightarrow{OD} - \overrightarrow{OA} = s(\overrightarrow{OB} - \overrightarrow{OA}) + t(\overrightarrow{OC} - \overrightarrow{OA}) \not \succeq \not \supset 0$, $\overrightarrow{OD} = (1 - s - t)\overrightarrow{OA} + s\overrightarrow{OB} + t\overrightarrow{OC}$
 $\overrightarrow{A(1, 0, 0)}$, $\overrightarrow{B(0, -1, 0)}$, $\overrightarrow{C(0, 0, -2)} \not \supset \not \succeq \not \supset$, $\overrightarrow{OD} = (1 - s - t)(1, 0, 0) + s(0, -1, 0) + t(0, 0, -2)$
 $= (1 - s - t, -s, -2t)$

これより、D(1-s-t, -s, -2t) である。

(3) 3 点 A, B, C を含む平面 α に対して、 \overrightarrow{AB} = (-1, -1, 0)、 \overrightarrow{AC} = (-1, 0, -2) さて、点 P から α に下ろした垂線の足 H は、H(1-s-t, -s, -2t) と表され、 \overrightarrow{PH} = (1-s-t+1, -s-5, -2t+2) = (-s-t+2, -s-5, -2t+2) ここで、 \overrightarrow{PH} $\bot \overrightarrow{AB}$, \overrightarrow{PH} $\bot \overrightarrow{AC}$ から、 \overrightarrow{PH} \overleftarrow{AB} = 0, \overrightarrow{PH} \overleftarrow{AC} = 0 となり、-(-s-t+2)-(-s-5)=0 ……①、-(-s-t+2)-2(-2t+2)=0 ……② ①から 2s+t=-3、②から s+5t=6 となり、まとめると $s=-\frac{7}{3}$ 、 $t=\frac{5}{3}$ である。 すると、 $H\left(\frac{5}{3}, \frac{7}{3}, -\frac{10}{3}\right)$ となり、

$$PH = \sqrt{\left(\frac{5}{3} + 1\right)^2 + \left(\frac{7}{3} - 5\right)^2 + \left(-\frac{10}{3} + 2\right)^2} = \sqrt{\frac{64}{9} + \frac{64}{9} + \frac{16}{9}} = 4$$

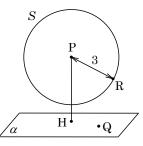
これより、 $\mathrm{PH}>r$ となり、平面 α 上を動く点 Q と球面 S 上を動く点 R の距離の最小値は、

$$PH - r = 4 - 3 = 1$$

このときの点Qは、点Hと一致するので、

$$Q\left(\frac{5}{3}, \frac{7}{3}, -\frac{10}{3}\right)$$

そして、点 R は線分 PH を3:1に内分する点となり、 $\frac{\alpha}{4}$ $\left(\frac{-1+5}{4}, \frac{5+7}{4}, \frac{-2-10}{4}\right)$ から R(1, 3, -3) である。



[解 説]

球面と平面の関係の問題です。誘導に従って解いていきましたが、初めに平面の方程式を立式し、点と平面の距離の公式を利用すると、記述量が減少します。

問題のページへ

n 個のボールを k 個の箱へ投げ入れ、箱 i ($i=1, 2, \dots, k$) に入っているボールの個数を a_i とおく。このとき、 $a_1+a_2+\dots+a_k=n$ である。

- (1) n=4, k=5 のとき, $a_1=0$ となるのは, ボールを箱 1 以外に投げ入れる場合より, その確率は $\frac{4^4}{5^4}=\frac{256}{625}$ である。
- (2) $a_i = 0$ となる事象を A_i とし、その確率を $P(A_i)$ とおく。 さて、 $k \ge 2$ のとき、 $a_1 \times a_2 = 0$ となる事象は $A_1 \cup A_2$ であり、(1)と同様に考え、 $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$ $= \frac{(k-1)^n}{b^n} + \frac{(k-1)^n}{b^n} - \frac{(k-2)^n}{b^n} = \frac{2(k-1)^n - (k-2)^n}{b^n}$
- (3) k=4のとき、 $a_1 \times a_2 \times a_3 \times a_4 = 0$ となる事象は $A_1 \cup A_2 \cup A_3 \cup A_4$ であり、 $P(A_1 \cup A_2 \cup A_3 \cup A_4) = P(A_1 \cup A_2 \cup A_3) + P(A_4) P((A_1 \cup A_2 \cup A_3) \cap A_4)$ ここで、 $Q=P(A_1 \cup A_2 \cup A_3)$ 、 $R=P((A_1 \cup A_2 \cup A_3) \cap A_4)$ とおくと、 $Q=P(A_1) + P(A_2) + P(A_3) P(A_1 \cap A_2) P(A_1 \cap A_3) P(A_2 \cap A_3)$ $+ P(A_1 \cap A_2 \cap A_3)$ $R=P((A_1 \cap A_4) \cup (A_2 \cap A_4) \cup (A_3 \cap A_4))$ $= P(A_1 \cap A_4) + P(A_2 \cap A_4) + P(A_3 \cap A_4) P(A_1 \cap A_2 \cap A_3) \cap A_4$ $= P(A_1 \cap A_3 \cap A_4) P(A_2 \cap A_3 \cap A_4) + P(A_1 \cap A_2 \cap A_3 \cap A_4)$ $= P(A_1 \cap A_3 \cap A_4) P(A_2 \cap A_3 \cap A_4) + P(A_1 \cap A_2 \cap A_3 \cap A_4)$ $= P(A_1) + P(A_2) + P(A_3) + P(A_4) P(A_1 \cap A_2) P(A_1 \cap A_3) P(A_1 \cap A_4) \cap P(A_2 \cap A_3) P(A_2 \cap A_4) + P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_4) \cap P(A_2 \cap A_3) P(A_2 \cap A_4) P(A_3 \cap A_4) + P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_4) \cap P(A_1 \cap A_3 \cap A_4) + P(A_1 \cap A_3 \cap A_4) + P(A_1 \cap A_3 \cap A_4) P(A_1 \cap A_2 \cap A_3 \cap A_4) \cap P(A_1 \cap A_3 \cap A$

$$P(A_1 \cup A_2 \cup A_3 \cup A_4) = 4 \cdot \frac{3^n}{4^n} - 6 \cdot \frac{2^n}{4^n} + 4 \cdot \frac{1^n}{4^n} - 0 = \frac{4 \cdot 3^n - 6 \cdot 2^n + 4}{4^n}$$

したがって、 $a_1 \times a_2 \times a_3 \times a_4 \neq 0$ となる確率 p_n は、

$$p_n = 1 - \frac{4 \cdot 3^n - 6 \cdot 2^n + 4}{4^n}$$

(4)
$$p_{n+1} - p_n = \left(1 - \frac{4 \cdot 3^{n+1} - 6 \cdot 2^{n+1} + 4}{4^{n+1}}\right) - \left(1 - \frac{4 \cdot 3^n - 6 \cdot 2^n + 4}{4^n}\right)$$

$$= \frac{-(4 \cdot 3^{n+1} - 6 \cdot 2^{n+1} + 4) + (16 \cdot 3^n - 24 \cdot 2^n + 16)}{4^{n+1}} = \frac{4 \cdot 3^n - 12 \cdot 2^n + 12}{4^{n+1}}$$

$$= \left(\frac{3}{4}\right)^n - 3\left(\frac{1}{2}\right)^n + 3\left(\frac{1}{4}\right)^n = \left(\frac{3}{4}\right)^n \left\{1 - 3\left(\frac{2}{3}\right)^n + 3\left(\frac{1}{3}\right)^n\right\}$$
これより、 $r^n(p_{n+1} - p_n) = \left(\frac{3}{4}r\right)^n \left\{1 - 3\left(\frac{2}{3}\right)^n + 3\left(\frac{1}{3}\right)^n\right\}$ となる。

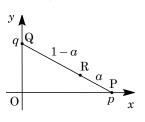
すると, $\{r^n(p_{n+1}-p_n)\}$ が収束する正の数 r の条件は, $0<\frac{3}{4}r\leq 1$ より, $0< r\leq \frac{4}{3}$ である。

[解 説]

確率の標準的な問題です。(3)は設問の流れから、4 つの事象の和事象の確率として 求めましたが、確認のため(*)の式を導くプロセスも記しておきました。なお、空箱の 数で場合分けする方法もありますが。

問題のページへ

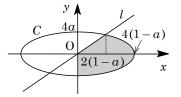
(1)
$$P(p, 0)$$
, $Q(0, q)$ に対して、 $PQ = 4$ より、
$$\sqrt{p^2 + q^2} = 4$$
, $p^2 + q^2 = 16$ ……① ここで、 $0 < a < 1$ として、線分 PQ を $a : (1-a)$ の比に内分する点を $R(x, y)$ とおくと、 $x = (1-a)p$, $y = aq$ から、
$$p = \frac{x}{1-a}$$
 ……②、 $q = \frac{y}{a}$ ……③



②③を①に代入すると、点Rの軌跡Cの方程式は、

$$\left(\frac{x}{1-a}\right)^2 + \left(\frac{y}{a}\right)^2 = 16, \frac{x^2}{16(1-a)^2} + \frac{y^2}{16a^2} = 1 \dots$$

(2) $\frac{x^2}{16(1-a)^2} + \frac{y^2}{16a^2} \le 1$, $x \ge 0$, $\sqrt{3}ax \ge (1-a)y$ $16(1-a)^2$ $16a^2$ = 1, x = 0, voux = (1-a)y 表される領域 D について, $C \ge l : \sqrt{3}ax = (1-a)y$ の交 点は、④と $\frac{\sqrt{3}x}{1} = \frac{y}{a}$ を連立して、



 $\left(\frac{x}{1-x}\right)^2 + 3\left(\frac{x}{1-x}\right)^2 = 16, \left(\frac{x}{1-x}\right)^2 = 4$

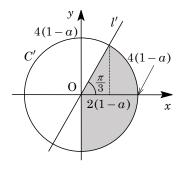
すると、 $x^2 = 4(1-a)^2$ となり、x > 0 から x = 2(1-a) である。

このとき、領域Dの面積をSとする。

さて、右上図をy軸方向に $\frac{1-a}{a}$ 倍すると、曲線Cは

中心が原点で半径が4(1-a)の円C'となり、また直線 $l: \sqrt{3}ax = (1-a)y$ は直線 $l': \sqrt{3}x = y$ になる。

すると、直線l'と x 軸の正の向きとなす角は $\frac{\pi}{3}$ であ



るので、右図の網点部の領域D'の面積S'は、

$$S' = \frac{1}{2} \{4(1-a)\}^2 \cdot \left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \frac{20}{3}\pi (1-a)^2$$

これより、 $S = \frac{a}{1-a}S' = \frac{a}{1-a} \cdot \frac{20}{3}\pi(1-a)^2 = \frac{20}{3}\pi a(1-a)$ となる。

(3) (2)から、
$$S = \frac{20}{3}\pi(a-a^2) = \frac{20}{3}\pi\left\{-\left(a-\frac{1}{2}\right)^2 + \frac{1}{4}\right\}$$
 すると、 $0 < a < 1$ から、面積 S は $a = \frac{1}{2}$ のとき最大値 $\frac{20}{3}\pi \cdot \frac{1}{4} = \frac{5}{3}\pi$ をとる。

「解説]

楕円についての有名問題です。(2)は楕円を円に変換して面積計算をしました。

問題のページへ

(1)
$$z^2 - 2t^3z + t^6 + 9t^2 = 0$$
 に対して,
 $z = t^3 \pm \sqrt{t^6 - (t^6 + 9t^2)} = t^3 \pm \sqrt{-9t^2} = t^3 \pm 3|t|i$
 z の虚部は 0 以上から, $z = t^3 + 3|t|i$ ………①

$$z$$
 の虚部は 0 以上から, $z=t^*+3|t|t$ …… (1)

また,
$$w = i\overline{z}$$
 から, $w = i(t^3 - 3|t|i) = 3|t| + t^3i$ ……②

(2)
$$0 \le t \le 2$$
 のとき、①から $z = t^3 + 3ti$ 、②から $w = 3t + t^3i$ となり、

$$z - w = (t^3 - 3t) + (3t - t^3)i$$
$$|z - w| = \sqrt{(t^3 - 3t)^2 + (3t - t^3)^2} = \sqrt{2(t^3 - 3t)^2} = \sqrt{2}|t^3 - 3t|$$

ここで、
$$f(t) = t^3 - 3t$$
 とおくと、

$$f'(t) = 3t^2 - 3 = 3(t-1)(t+1)$$

すると、 $0 \le t \le 2$ における f(t) の増減は 右表のようになる。これより、y = |f(t)|の

		•			
t	0	•••	1	•••	2
f'(t)		_	0	+	
f(t)	0	\	-2	7	2

グラフは、右図の通りである。

したがって、 $|z-w|=\sqrt{2}|f(t)|$ より、|z-w|の最大値は $2\sqrt{2}$ である。このときの t の値は、t=1、2 となる。

(3) z = x + yi とおくと, zの軌跡 C_1 は、①から、

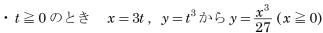
$$C_1: x = t^3, \ y = 3 | t | \cdots 3$$

同様に、w = x + yi とおくと、w の軌跡 C_2 は、②から、

$$C_2: x = 3|t|, y = t^3 \cdots$$

③④より、曲線 C_1 と曲線 C_2 は直線y=xについて対称である。

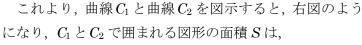
さて、曲線 C_2 について、④から、



・
$$t \le 0$$
 のとき $x = -3t$, $y = t^3$ から $y = -\frac{x^3}{27}$ $(x \ge 0)$

また、曲線 C_2 と直線y=x $(x \ge 0)$ の交点は、 $x=\frac{x^3}{27}$ よ

り x = 0, $3\sqrt{3}$ である。



$$S = 2 \int_0^{3\sqrt{3}} \left(x - \frac{x^3}{27} \right) dx = 2 \left[\frac{x^2}{2} - \frac{x^4}{108} \right]_0^{3\sqrt{3}} = 27 - \frac{27^2}{54} = \frac{27}{2}$$

複素数平面上の軌跡に面積計算を加えた問題です。

