2025 入試対策 2次数学ランドマーク

雅等39題

文系+理系 27か年

1998 - 2024

外林 康治 編著

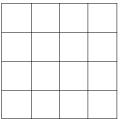
電送数学舎

確率

【問題一覧】

(注) 問題番号が、対応する解答例へのハイパーリンクになっています。

1 一辺の長さが 4 の正方形の紙の表を,図のように一辺の長さが 1 のマス目 16 個に区切る。その紙を 2 枚用意し,A と B の 2 人に渡す。A と B はそれぞれ渡された紙の 2 個のマス目を無作為に選んで塗りつぶす。塗りつぶしたあと,両方の紙を表を上にしてどのように重ね合わせても,塗りつぶされたマス目がどれも重ならない確率を求めよ。ただし,2 枚の紙を重ね合わせ



るときには、それぞれの紙を回転させてもよいが、紙の四隅は合わせることとする。

[1999 大阪大・理]

- **2** 1 個のサイコロを n 回投げる。
- (1) $n \ge 2$ のとき、1 の目が少なくとも 1 回出て、かつ 2 の目も少なくとも 1 回出る確率を求めよ。
- (2) $n \ge 3$ のとき、1 の目が少なくとも 2 回出て、かつ 2 の目が少なくとも 1 回出る確率を求めよ。 [2000 一橋大・文]
- **3** 半径 1 の円周上に、4n 個の点 P_0 、 P_1 、…、 P_{4n-1} が、反時計回りに等間隔に並んでいるとする。ただし、n は自然数である。
- (1) 線分 P_0P_k の長さが $\sqrt{2}$ 以上となるkの範囲を求めよ。
- (2) 点 P_0 , P_1 , …, P_{4n-1} のうちの相異なる 3 点を頂点にもつ三角形のうち, 各辺の長さがすべて $\sqrt{2}$ 以上になるものの個数 g(n) を求めよ。 [2001 大阪大・理]
- **4** コインを投げる試行の結果によって、数直線上にある 2 点 A, B を次のように動かす。

表が出た場合: 点Aの座標が点Bの座標より大きいときは, AとBを共に正の方向に1動かす。そうでないときは, Aのみ正の方向に1動かす。

裏が出た場合:点Bの座標が点Aの座標より大きいときは,AとBを共に正の方向に1動かす。そうでないときは,Bのみ正の方向に1動かす。

最初 2 点 A, B は原点にあるものとし、上記の試行を n 回繰り返して A と B を動かしていった結果, A, B の到達した点の座標をそれぞれ a, b とする。

- (1) n 回コインを投げたときの表裏の出方の場合の数 2^n 通りのうち、a=b となる場合の数を X_n とおく。 X_{n+1} と X_n の間の関係式を求めよ。
- (2) X_n を求めよ。

[2001 東京大・文]

- **5** 箱の中に 1 から N までの番号が 1 つずつ書かれた N 枚のカードが入っている。 この箱から無作為にカードを 1 枚取り出して戻すという試行を k 回行う。このとき,はじめから j 回目 (j=1, ..., k) までに取り出したカードの番号の和を X_j とし, $X_1, ..., X_k$ のうちのどれかが k となる確率を $P_N(k)$ とする。
- (1) $N \ge 3$ のとき $P_N(1)$, $P_N(2)$, $P_N(3)$ を N で表せ。
- (2) $P_3(4)$, $P_3(5)$ を求めよ。
- (3) $k \le N$ のとき、 $P_N(k)$ を Nと kで表せ。

[2001 東京工業大・理]

- **6** 1 が書かれたカードが 2 枚, 2 が書かれたカードが 2 枚, …, n が書かれたカードが 2 枚の合計 2n 枚のカードがある。カードをよく混ぜ合わせた後, 1 枚ずつ左から順に並べる。このとき,カードに書かれている数の列を, a_1 , a_2 , …, a_{2n} とする。 $a_k \ge a_{k+1}$ ($1 \le k < 2n$) となる最小の k を X とする。
- (1) X=1となる確率を求めよ。
- (2) X = nとなる確率を求めよ。
- (3) m は $1 \le m < n$ を満たす整数とする。 $X \ge m$ となる確率を求めよ。

[2003 一橋大・文]

7 さいころを振り、出た目の数で 17 を割った余りを X_1 とする。ただし、1 で割った余りは0 である。

さらにさいころを振り、出た目の数で X_1 を割った余りを X_2 とする。以下同様にして、 X_n が決まればさいころを振り、出た目の数で X_n を割った余りを X_{n+1} とする。このようにして、 X_n 、n=1、2、…を定める。

- (1) $X_3 = 0$ となる確率を求めよ。
- (2) 各nに対し、 $X_n = 5$ となる確率を求めよ。
- (3) 各nに対し、 $X_n = 1$ となる確率を求めよ。

注意:さいころは1から6までの目が等確率で出るものとする。 [2003 東京大・文]

- **8** サイコロの出た目の数だけ数直線を正の方向に移動するゲームを考える。ただし、8 をゴールとしてちょうど 8 の位置へ移動したときにゲームを終了し、8 をこえた分についてはその数だけ戻る。たとえば、7 の位置で 3 が出た場合、8 から 2 戻って 6 へ移動する。なお、サイコロは 1 から 6 までの目が等確率で出るものとする。原点から始めて、サイコロを n 回投げ終えたときに 8 へ移動してゲームを終了する確率を p_n とおく。
- (1) p_2 を求めよ。
- (2) p₃を求めよ。
- (3) 4以上のすべてのnに対して p_n を求めよ。

[2004 名古屋大·理]

9 片面を白色に、もう片面を黒色に塗った正方形の板が 3 枚ある。この 3 枚の板を机の上に横に並べ、次の操作をくり返し行う。

さいころを振り、出た目が 1, 2 であれば左端の板を裏返し、3, 4 であればまん中の板を裏返し、5, 6 であれば右端の板を裏返す。

たとえば、最初、板の表の色の並び方が「白白白」であったとし、1回目の操作で出たさいころの目が1であれば、色の並び方は「黒白白」となる。さらに2回目の操作を行って出たさいころの目が5であれば、色の並び方は「黒白黒」となる。

- (1) 「白白白」から始めて、3回の操作の結果、色の並び方が「黒白白」となる確率を求めよ。
- (2) 「白白白」から始めて、n回の操作の結果、色の並び方が「白白白」または「白黒白」となる確率を求めよ。

注意:さいころは1から6までの目が等確率で出るものとする。 [2004 東京大・理]

- 10 1から6の番号のつけられた6個の箱に、それぞれ3枚ずつの皿が重ねて置かれている。白いサイコロと黒いサイコロそれぞれ1個を同時に振って、出た目に応じて次の規則で皿を移動させるものとする。2つのサイコロに同じ目が出たときは皿は移動させない。2つのサイコロに異なる目が出たときは、黒いサイコロの目の数と同じ番号の箱から皿1枚を白いサイコロの目の数と同じ番号の箱に移す。
- (1) サイコロを 3 回振るとき, 皿が 4 枚の箱と 2 枚の箱がそれぞれ 3 個ずつとなる確率を求めよ。
- (2) サイコロを 3 回振るとき, 皿が 3 枚の箱が 2 個, 5 枚の箱, 4 枚の箱, 2 枚の箱, 1 枚の箱がそれぞれ 1 個ずつとなる確率を求めよ。 [2005 東北大・文]

11 1からnまでの番号のついたn枚の札が袋に入っている。ただし、 $n \ge 3$ とし、同じ番号の札はないとする。この袋から 3 枚の札を取り出して、札の番号を大きさの順に並べるとき、等差数列になっている確率を求めよ。 [2005 京都大・文]

12 先頭車両から順に 1 から n までの番号のついた n 両編成の列車がある。ただし $n \ge 2$ とする。各車両を赤色,青色,黄色のいずれか 1 色で塗るとき,隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。 [2005 京都大・理]

13 コンピュータの画面に、記号〇と×のいずれかを表示させる操作をくり返し行う。このとき、各操作で、直前の記号と同じ記号を続けて表示する確率は、それまでの経過に関係なく、pであるとする。

最初に、コンピュータの画面に記号×が表示された。操作をくり返し行い、記号×が最初のものも含めて 3 個出るよりも前に、記号 \bigcirc が n 個出る確率を P_n とする。ただし、記号 \bigcirc が n 個出た段階で操作は終了する。

- (1) P_2 を p で表せ。
- (2) P_3 をpで表せ。
- (3) $n \ge 4$ のとき、 P_n を p と n で表せ。

[2006 東京大・文]

- **14** 数 1, 2, 3 を重複を許して n 個並べてできる数列 a_1, a_2, \dots, a_n を考える。
- (1) 条件 $a_1 \le a_2 \le \dots \le a_n = j$ を満たす数列が $A_n(j)$ 通りあるとする。ただし、j = 1, 2, 3 とする。
 - (i) $A_n(1)$, $A_n(2)$ を求めよ。
 - (ii) $n \ge 2$ のとき、 $A_n(3)$ を $A_{n-1}(1)$ 、 $A_{n-1}(2)$ 、 $A_{n-1}(3)$ で表し、 $A_n(3)$ を求めよ。
- (2) $n \ge 2$ のとき,条件 $a_1 \le a_2 \le \cdots \le a_{n-1}$ かつ $a_{n-1} > a_n$ を満たす数列は何通りあるか。 [2007 北海道大・文]

- **15** 表が出る確率が p, 裏が出る確率が1-p であるような硬貨がある。ただし、0 とする。この硬貨を投げて、次のルール(R)の下で、ブロック積みゲームを行う。
 - ① ブロックの高さは、最初は0とする。
 - (R) ② 硬貨を投げて表が出れば高さ1のブロックを1つ積み上げ、裏が出ればブロックをすべて取り除いて高さ0に戻す。

n を正の整数, m を $0 \le m \le n$ を満たす整数とする。

- (1) n 回硬貨を投げたとき、最後にブロックの高さが m となる確率を求めよ。
- (2) (1)で、最後にブロックの高さがm以下となる確率 q_m を求めよ。
- (3) ルール(R)の下で、n 回硬貨投げを独立に 2 度行い、それぞれ最後のブロックの高さを考える。2 度のうち、高い方のブロックの高さが m である確率 r_m を求めよ。ただし、最後のブロックの高さが等しいときはその値を考えるものとする。

[2007 東京大]

- 16 白黒 2 種類のカードがたくさんある。そのうち 4 枚を手もとにもっているとき、 次の操作(A)を考える。
 - (A) 手もちの 4 枚の中から 1 枚を,等確率 $\frac{1}{4}$ で選び出し,それを違う色のカードに とりかえる。

最初にもっている 4 枚のカードは、白黒それぞれ 2 枚であったとする。以下の(1)、(2)に答えよ。

- (1) 操作(A)を 4 回繰り返した後に初めて, 4 枚とも同じ色のカードになる確率を求め よ。
- (2) 操作(A)を n 回繰り返した後に初めて、4 枚とも同じ色のカードになる確率を求めよ。 [2008 東京大・文]
- **17** n 枚のカードを積んだ山があり、各カードには上から順番に 1 から n まで番号がつけられている。ただし $n \ge 2$ とする。このカードの山に対して次の試行を繰り返す。 1 回の試行では、一番上のカードを取り、山の一番上にもどすか、あるいはいずれかのカードの下に入れるという操作を行う。これら n 通りの操作はすべて同じ確率であるとする。n 回の試行を終えたとき、最初一番下にあったカード(番号 n)が山の一番上にきている確率を求めよ。

- **18** はじめに、A が赤玉を 1 個、B が白玉を 1 個、C が青玉を 1 個持っている。 表裏の 出る確率がそれぞれ $\frac{1}{2}$ の硬貨を投げ、表が出れば A と B の玉を交換し、裏が出れば B と C の玉を交換する、という操作を考える。 この操作を n 回 $(n=1, 2, 3, \cdots)$ くり 返した後に A、B、C が赤玉を持っている確率をそれぞれ a_n 、 b_n 、 c_n とおく。
- (1) a_1 , b_1 , c_1 , a_2 , b_2 , c_2 を求めよ。
- (2) a_{n+1} , b_{n+1} , c_{n+1} を a_n , b_n , c_n で表せ。
- (3) n が奇数ならば $a_n = b_n > c_n$ が成り立ち、n が偶数ならば $a_n > b_n = c_n$ が成り立つことを示せ。
- (4) b_n を求めよ。

[2010 名古屋大・文]

- 19 数字の 2 を書いた玉が 1 個,数字の 1 を書いた玉が 3 個,数字の 0 を書いた玉が 4 個あり、これら合計 8 個の玉が袋に入っている。以下の(1)から(3)のそれぞれにおいて、この状態の袋から 1 度に 1 個ずつ玉を取り出し、取り出した玉は袋に戻さないものとする。
- (1) 玉を2度取り出すとき,取り出した玉に書かれた数字の合計が2である確率を求めよ。
- (2) 玉を 4 度取り出すとき、取り出した玉に書かれた数字の合計が 4 以下である確率を求めよ。
- (3) 玉を8度取り出すとき,次の条件が満たされる確率を求めよ。 条件:すべてのn=1, 2, …,8に対して,1個目からn個目までの玉に書かれた 数字の合計はn以下である。 [2011 名古屋大・文]
- **20** k+1 個 $(k \ge 1)$ の部屋 A_0 , A_1 , A_2 , …, A_k がある。千葉君はある部屋から,その部屋以外の部屋を等しい確率 $\frac{1}{k}$ で 1 つ選び,そこへ移動する。最初,部屋 A_0 にいた千葉君が,n 回 $(n \ge 1)$ 部屋を移動した後に部屋 A_1 にいる確率を求めよ。

[2011 千葉大・理]

- **21** $A \ge B$ O 2 人 が , 1 個 O サイコロを次の手順により投げ合う。
 - 1回目はAが投げる。
 - 1,2,3の目が出たら、次の回には同じ人が投げる。
 - 4,5の目が出たら、次の回には別の人が投げる。
 - 6の目が出たら、投げた人を勝ちとし、それ以降は投げない。
- (1) n回目にAがサイコロを投げる確率 a_n を求めよ。
- (2) ちょうど n 回目のサイコロ投げで A が勝つ確率 p_n を求めよ。
- (3) n 回以内のサイコロ投げで A が勝つ確率 q_n を求めよ。

[2011 一橋大・文]

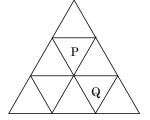
- **22** さいころをn回($n \ge 2$)投げ,k回目($1 \le k \le n$)に出る目を X_k とする。
- (1) 積 X_1X_2 が 18以下である確率を求めよ。
- (2) 積 $X_1X_2 \cdots X_n$ が偶数である確率を求めよ。
- (3) 積 $X_1X_2 \cdots X_n$ が 4 の倍数である確率を求めよ。
- (4) 積 $X_1X_2 \cdots X_n$ を3で割ったときの余りが1である確率を求めよ。

[2012 千葉大・医]

- ②3 n を 2 以上の整数とする。1 から n までの整数が 1 つずつ書かれている n 枚のカードがある。ただし,異なるカードには異なる整数が書かれているものとする。この n 枚のカードから,1 枚のカードを無作為に取り出して,書かれた整数を調べてからもとに戻す。この試行を 3 回繰り返し,取り出したカードに書かれた整数の最小値を X,最大値を Y とする。次の問いに答えよ。ただし,j と k は正の整数で, $j+k \le n$ を満たすとする。また,s はn-1以下の正の整数とする。
- (1) $X \ge j$ かつ $Y \le j + k$ となる確率を求めよ。
- (2) X = j かつ Y = j + k となる確率を求めよ。
- (3) Y-X=sとなる確率をP(s)とする。P(s)を求めよ。
- (4) n が偶数のとき、P(s) を最大にするs を求めよ。

[2012 名古屋大]

24 図のように、正三角形を 9 つの部屋に辺で区切り、部屋 P、Q を定める。1 つの球が部屋 P を出発し、1 秒ごとに、そのままその部屋にとどまることなく、辺を共有する隣の部屋に等確率で移動する。球が n 秒後に部屋 Q にある確率を求めよ。



[2012 東京大]

- **②5** サイコロを n 回投げ、k 回目に出た目を a_k とする。また、 s_n を $s_n = \sum_{k=1}^n 10^{n-k} a_k$ で定める。
- (1) s_n が 4 で割り切れる確率を求めよ。
- (2) s_n が 6 で割り切れる確率を求めよ。
- (3) s_n が 7 で割り切れる確率を求めよ。

[2013 一橋大・文]

- **26** 1, 2, 3, 4, 5 のそれぞれの数字が書かれた玉が 2 個ずつ, 合計 10 個ある。
- (1) 10 個の玉を袋に入れ、よくかき混ぜて 2 個の玉を取り出す。書かれている 2 つの数字の積が 10 となる確率を求めよ。
- (2) 10 個の玉を袋に入れ、よくかき混ぜて 4 個の玉を取り出す。書かれている 4 つの 数字の積が 100 となる確率を求めよ。
- (3) 10 個の玉を袋に入れ、よくかき混ぜて 6 個の玉を順に取り出す。1 個目から 3 個目の玉に書かれている 3 つの数字の積と、4 個目から 6 個目の玉に書かれている 3 つの数字の積が等しい確率を求めよ。 [2014 東北大]
- **27** 数直線上にある 1, 2, 3, 4, 5 の 5 つの点と 1 つの石を考える。石がいずれかの点にあるとき、

′石が点1にあるならば、確率1で点2に移動する

石が点k (k=2, 3, 4) にあるならば、確率 $\frac{1}{2}$ で点k-1に、確率 $\frac{1}{2}$ で点k+1に移

動する

【石が点5にあるならば、確率1で点4に移動する

という試行を行う。石が点 1 にある状態から始め、この試行を繰り返す。また、石が移動した先の点に印をつけていく(点 1 には初めから印がついているものとする)。このとき、次の問いに答えよ。

- (1) 試行を 6 回繰り返した後に、石が点k(k=1, 2, 3, 4, 5)にある確率をそれぞれ求めよ。
- (2) 試行を6回繰り返した後に、5つの点すべてに印がついている確率を求めよ。
- (3) 試行を n 回(n≥1)繰り返した後に、ちょうど3つの点に印がついている確率を求めよ。
 [2015 名古屋大・理]

28 投げたとき表と裏の出る確率がそれぞれ $\frac{1}{2}$ のコインを 1 枚用意し、次のように 左から順に文字を書く。

コインを投げ、表が出たときは文字列 AA を書き、裏が出たときは文字 B を書く。 さらに繰り返しコインを投げ、同じ規則に従って、AA、B をすでにある文字列の右側につなげて書いていく。

たとえば、コインを 5 回投げ、その結果が順に表、裏、裏、表、裏であったとすると、得られる文字列は、AABBAAB となる。このとき、左から 4 番目の文字は B、5 番目の文字は A である。

- (1) n を正の整数とする。n 回コインを投げ、文字列を作るとき、文字列の左から n 番目の文字が A となる確率を求めよ。
- (2) n を 2 以上の整数とする。n 回コインを投げ、文字列を作るとき、文字列の左から n-1番目の文字が A で、かつ n 番目の文字が B となる確率を求めよ。

[2015 東京大・文]

29 n を 2 以上の自然数とする。n 人でじゃんけんをする。各人はグー, チョキ, パーをそれぞれ $\frac{1}{3}$ の確率で出すものとする。勝者が 1 人に決まるまでじゃんけんを繰り返す。ただし,負けた人はその後のじゃんけんには参加しない。このとき,以下の問いに答えよ。

- (1) 1回目のじゃんけんで、勝者がただ1人に決まる確率を求めよ。
- (2) 1回目のじゃんけんで、あいこになる確率を求めよ。
- (3) n=5のとき、ちょうど 2 回のじゃんけんで、勝者がただ 1 人に決まる確率を求めよ。 [2016 信州大・医]

- **30** A, B, C の 3 つのチームが参加する野球の大会を開催する。以下の方式で試合を行い、2 連勝したチームが出た時点で、そのチームを優勝チームとして大会は終了する。
 - (a) 1 試合目でAとBが対戦する。
 - (b) 2試合目で、1試合目の勝者と、1試合目で待機していた C が対戦する。
 - (c) k 試合目で優勝チームが決まらない場合は、k 試合目の勝者と、k 試合目で待機していたチームがk+1 試合目で対戦する。ここで k は 2 以上の整数とする。

なお、すべての対戦において、それぞれのチームが勝つ確率は $\frac{1}{2}$ で、引き分けはないものとする。

- (1) ちょうど 5 試合目で A が優勝する確率を求めよ。
- (2) n を 2 以上の整数とする。ちょうど n 試合目で A が優勝する確率を求めよ。
- (3) m を正の整数とする。総試合数が 3m 回以下で A が優勝する確率を求めよ。

[2016 東京大・文]

- **31** n を 2 以上, a を 1 以上の整数とする。箱の中に、1 から n までの番号札がそれ ぞれ 1 枚ずつ、合計 n 枚入っている。この箱から、1 枚の札を無作為に取り出して元に 戻す、という試行を a 回繰り返す。ちょうど a 回目の試行でそれまでに取り出した札に書かれた数の和がはじめて n 以上となる確率を p(a) とする。
- (1) p(1)とp(n)を求めよ。
- (2) *p*(2) を求めよ。
- (3) n が 3 以上の整数のとき p(3) を求めよ。

[2018 東北大・理]

32 1 から 4 までの数字を 1 つずつ書いた 4 枚のカードが箱に入っている。箱の中から 1 枚カードを取り出してもとに戻す試行を n 回続けて行う。k 回目に取り出したカードの数字を X_k とし,積 $X_1X_2\cdots X_n$ を 4 で割った余りが 0, 1, 2, 3 である確率をそれぞれ p_n , q_n , r_n , s_n とする。 p_n , q_n , r_n , s_n を求めよ。 [2018 九州大・理]

- ③3 コインが 5 枚ある。さいころを振って出た目によって、これらのコインを 1 枚ずつ 3 つの箱 A, B, C のいずれかに入れていく。出た目が 1 であればコインを 1 枚,箱 A に入れる。出た目が 2 か 3 であればコインを 1 枚,箱 B に入れる。出た目が 4 か 5 か 6 であればコインを 1 枚,箱 C に入れる。さいころを 5 回振ったとき,次の問いに答えよ。
- (1) 箱 A と箱 B にコインがそれぞれちょうど 2 枚ずつ入っている確率を求めよ。
- (2) A, B, C いずれの箱にもコインが 1 枚以上入っている確率を求めよ。
- (3) 試行の後に箱 A を開けるとちょうど 2 枚のコインが入っていた。このとき箱 B にコインがちょうど 2 枚入っている確率を求めよ。 [2019 千葉大・理]
- **34** n を 2 以上の自然数とする。1 個のさいころを続けて n 回投げる試行を行い,出た目を順に X_1 、 X_2 、…, X_n とする。
- (1) X_1 , X_2 , …, X_n の最大公約数が 3 となる確率を n の式で表せ。
- (2) X_1 , X_2 , …, X_n の最大公約数が 1 となる確率を n の式で表せ。
- (3) X_1 , X_2 , …, X_n の最小公倍数が 20 となる確率を n の式で表せ。

[2020 北海道大・理]

- **35** n を 2 以上の整数とする。1 から n までの番号が付いた n 個の箱があり、それぞれの箱には赤玉と白玉が 1 個ずつ入っている。このとき操作(*)をk=1, …, n-1 に対して、k が小さい方から順に 1 回ずつ行う。
 - (*) 番号kの箱から玉を1個取り出し、番号k+1の箱に入れてよくかきまぜる。

一連の操作がすべて終了した後、番号nの箱から玉を1個取り出し、番号1の箱に入れる。このとき番号1の箱に赤玉と白玉が1個ずつ入っている確率を求めよ。

[2021 京都大・文]

- **36** K を 3 より大きな奇数とし、l+m+n=K を満たす正の奇数の組(l, m, n)の個数 N を考える。ただし、たとえば、K=5 のとき、(l, m, n)=(1, 1, 3) と(l, m, n)=(1, 3, 1) とは異なる組とみなす。
- (1) K = 99 のとき, N を求めよ。
- (2) K = 99 のとき、l, m, n の中に同じ奇数を 2 つ以上含む組(l, m, n) の個数を求めよ。
- (3) N > K を満たす最小の K を求めよ。

[2022 東北大]

- **37** 箱の中に 1 から N までの番号が 1 つずつ書かれた N 枚のカードが入っている。ただし,N は 4 以上の自然数である。「この箱からカードを 1 枚取り出し,書かれた番号を見てもとに戻す」という試行を考える。この試行を 4 回繰り返し,カードに書かれた番号を順に X, Y, Z, W とする。次の問いに答えよ。
- (1) X = Y = Z = W となる確率を求めよ。
- (2) X, Y, Z, Wが 4つの異なる番号からなる確率を求めよ。
- (3) X, Y, Z, W の うち 3 つが同じ番号で残り 1 つが他と異なる番号である確率を求めよ。
- (4) X, Y, Z, W が 3 つの異なる番号からなる確率を求めよ。 [2023 広島大]
- **38** 箱の中に、1 から 3 までの数字を書いた札がそれぞれ 3 枚ずつあり、全部で 9 枚入っている。A、B、C の 3 人がこの箱から札を無作為に取り出す。A と B が 2 枚ずつ、C が 3 枚取り出すとき、以下の問いに答えよ。
- (1) Aがもつ札の数字が同じである確率を求めよ。
- (2) A がもつ札の数字が異なり、B がもつ札の数字も異なり、かつ、C がもつ札の数字もすべて異なる確率を求めよ。
- (3) A がもつ札の数字のいずれかが、C がもつ札の数字のいずれかと同じである確率を求めよ。 [2023 岡山大・理]
- 39 n を 3 以上の奇数とする。円に内接する正 n 角形の頂点から無作為に相異なる 3 点を選んだとき,その 3 点を頂点とする三角形の内部に円の中心が含まれる確率 p_n を求めよ。 [2024 橋大・文]

確率

【解答例と解説】

(注) 問題番号が、対応する問題ページへのハイパーリンクになっています。

[1999 大阪大·理]

4

2

2 枚の紙を表を上にして重ね合わせたとき、16 個のマス目のうち重なるマス目には同じ番号を書いてみると、右図のようになる。これより、どの番号 2 3 4 2 も 4 つのマス目に書かれていることがわかる。 4 1 1 3

(i) A が同じ番号を 2 つ塗りつぶしたとき

A が選ぶ番号は $_4$ C $_1$ 通りで、B は A が選んだ番号以外の番号の書かれている 12 個のマス目から 2 つ選んで塗ればよいので、

$$\frac{{}_{4}C_{2}}{{}_{16}C_{2}} \times \frac{{}_{12}C_{2}}{{}_{16}C_{2}} \times {}_{4}C_{1} = \frac{1}{20} \times \frac{11}{20} \times 4 = \frac{11}{100}$$

(ii) A が異なる番号を 2 つ塗りつぶしたとき

A が選ぶ番号は $_4C_2$ 通りで、B は A が選んだ番号以外の番号の書かれている 8 個のマス目から 2 つ選んで塗ればよいので、

$$\frac{{}_{4}C_{1} \times {}_{4}C_{1}}{{}_{16}C_{2}} \times \frac{{}_{8}C_{2}}{{}_{16}C_{2}} \times {}_{4}C_{2} = \frac{2}{15} \times \frac{7}{30} \times 6 = \frac{14}{75}$$

(i)(ii)より、求める確率は、
$$\frac{11}{100} + \frac{14}{75} = \frac{89}{300}$$

[解 説]

難問風の問題設定にドキッとします。しかし、まん中の 4 つは同じというように考えていけば、結論までのプロセスが次第に見えてきます。

[2000 一橋大・文]

(1) 1 の目が少なくとも 1 回出る事象を A, 2 の目が少なくとも 1 回出る事象を B とすると, \overline{A} は 1 の目が 1 回も出ない事象, \overline{B} は 2 の目が 1 回も出ない事象, $\overline{A} \cap \overline{B}$ は 1 と 2 の目がともに 1 回も出ない事象を表す。

$$P(\overline{A}) = P(\overline{B}) = \left(\frac{5}{6}\right)^n, \ P(\overline{A} \cap \overline{B}) = \left(\frac{4}{6}\right)^n = \left(\frac{2}{3}\right)^n$$

1 の目が少なくとも 1 回出て、かつ 2 の目も少なくとも 1 回出る事象は $A \cap B$ となるので、求める確率は、

$$\begin{split} P(A \cap B) &= 1 - P(\overline{A \cap B}) = 1 - P(\overline{A} \cup \overline{B}) \\ &= 1 - \left\{ P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B}) \right\} \\ &= 1 - \left(\frac{5}{6} \right)^n - \left(\frac{5}{6} \right)^n + \left(\frac{2}{3} \right)^n = 1 - 2\left(\frac{5}{6} \right)^n + \left(\frac{2}{3} \right)^n \end{split}$$

(2) 1の目が少なくとも 2回出る事象を C とすると、 \overline{C} は 1 の目が 1 回も出ないかまたは 1 回だけ出る事象を表す。

$$P(\overline{C}) = \left(\frac{5}{6}\right)^n + {}_{n}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{n-1} = \left(\frac{5}{6}\right)^n + \frac{n}{6}\left(\frac{5}{6}\right)^{n-1} = \left(1 + \frac{n}{5}\right)\left(\frac{5}{6}\right)^n$$

また、 $\overline{C} \cap \overline{B}$ は2の目が1回も出なくて、1の目が1回も出ないかまたは1回だけ出る事象を表す。

$$P\left(\overline{C}\cap\overline{B}\right) = \left(\frac{2}{3}\right)^n + {}_n\mathrm{C}_1\left(\frac{1}{6}\right)\left(\frac{2}{3}\right)^{n-1} = \left(\frac{2}{3}\right)^n + \frac{n}{6}\left(\frac{2}{3}\right)^{n-1} = \left(1 + \frac{n}{4}\right)\left(\frac{2}{3}\right)^n$$

1 の目が少なくとも 2 回出て、かつ 2 の目が少なくとも 1 回出る事象は $C \cap B$ となるので、(1)と同様にして、求める確率は、

$$P(C \cap B) = 1 - \left\{ P(\overline{C}) + P(\overline{B}) - P(\overline{C} \cap \overline{B}) \right\}$$

$$= 1 - \left(1 + \frac{n}{5} \right) \left(\frac{5}{6} \right)^n - \left(\frac{5}{6} \right)^n + \left(1 + \frac{n}{4} \right) \left(\frac{2}{3} \right)^n$$

$$= 1 - \left(2 + \frac{n}{5} \right) \left(\frac{5}{6} \right)^n + \left(1 + \frac{n}{4} \right) \left(\frac{2}{3} \right)^n$$

「解説]

(1)は余事象を考えて、関係 $P(A \cap B) = 1 - \{P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B})\}$ を利用する頻出題です。(2)もまた、(1)とは独立に、この関係を用いました。(1)を誘導として設けた出題者の善意を無視してしまいましたが……。

[2001 大阪大・理]

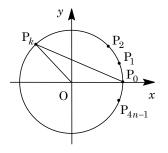
(1) $\angle P_0 OP_k = \frac{2\pi}{4n} k = \frac{\pi}{2n} k$ であり,条件より $P_0 P_k \ge \sqrt{2}$

なので $P_0P_k^2 \ge 2$

 $\triangle P_0OP_k$ に余弦定理を適用して,

$$\begin{aligned} 1 + 1 - 2 \cdot 1 \cdot 1 \cdot \cos \frac{\pi}{2n} k &\geq 2 \\ \cos \frac{\pi}{2n} k &\leq 0 \ \ \ \ \, \ \, \ \, \ \, \frac{\pi}{2} &\leq \frac{\pi}{2n} k \leq \frac{3\pi}{2} \end{aligned}$$

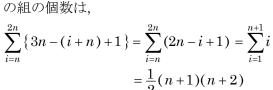
よって、 $n \le k \le 3n$

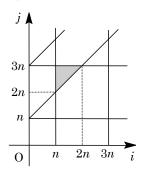


(2) P_0 を1つの頂点とする三角形を考え、他の頂点を P_i 、 P_j (i < j) とおくと、

$$n \le j \le 3n \cdots 3$$

①②③を満たす領域は右図のようになり、この領域内の(i, j)の組の個数は、





 P_1 を 1 つの頂点とする三角形, P_2 を 1 つの頂点とする三角形, ……, P_{4n-1} を 1 つの頂点とする三角形についても同数となり, また条件を満たす三角形を重複して 3 回数えていることより, 求める個数 q(n) は,

$$g(n) = \frac{1}{2}(n+1)(n+2) \cdot 4n \cdot \frac{1}{3} = \frac{2}{3}n(n+1)(n+2)$$

[解 説]

(2)は格子点の個数を対応させて数えました。よく見かける頻出題です。

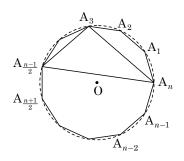
[2024 一橋大・文]

3以上の奇数 n に対して、点 O を中心とする円をとり、 それに内接する正 n 角形を $A_1A_2 \cdots A_n$ とおく。

そして、n 個の頂点から異なる 3 点を同時に選び、選んだ 3 点を頂点とする三角形が 0 を内部に含む確率を p_n 、内部に含まない確率を q_n とおく。

まず、n 個の頂点から異なる3点を選ぶ場合の数は、

$$_{n}$$
C₃ = $\frac{1}{6}n(n-1)(n-2)$ (通り)



ここで、n が 5 以上の奇数で、1 つの頂点が A_n の三角形が O を内部に含まないとき、残りの頂点を、 $1 \le i < j \le \frac{n-1}{2}$ として、 A_i 、 A_j とする。

このとき,iの選び方の数Nは,j=2,j=3,…, $j=\frac{n-1}{2}$ の場合を考え,

$$N = {}_{1}C_{1} + {}_{2}C_{1} + \dots + {}_{\frac{n-3}{2}}C_{1} = 1 + 2 + \dots + \frac{n-3}{2} = \frac{1}{2} \cdot \frac{n-3}{2} \cdot \frac{n-1}{2}$$
$$= \frac{1}{8}(n-3)(n-1) \quad (\text{if } 9)$$

これより、最長 $\mathrm{UA}_{n}\mathrm{A}_{i}$ で O を内部に含まない三角形はN個となる。

そして、これらの三角形を O のまわりに回転して考えると、O を内部に含まない三角形は合わせて nN 個となり、

$$nN = \frac{1}{8}n(n-3)(n-1)$$

したがって、三角形がOを内部に含まない確率 q_n は、

$$q_n = \frac{nN}{{}_{n}C_3} = \frac{6}{8} \cdot \frac{n(n-3)(n-1)}{n(n-1)(n-2)} = \frac{3(n-3)}{4(n-2)}$$

なお、n=3のとき $q_n=0$ となり、このときも成立している。

さらに、n は奇数のため、点 O が三角形の辺上に位置する場合はないので、 $p_n+q_n=1$ となり、

$$p_n = 1 - q_n = 1 - \frac{3(n-3)}{4(n-2)} = \frac{n+1}{4(n-2)}$$

[解 説]

図形と確率についての問題です。n の値を 5, 7, 9, …として,余事象を考えるという方針を立てました。なお,今年の東大・文系に,三角形を四角形にしただけの問題が出ていましたので,その解答例を流用しています。